## CITY OF LINWOOD CITY HALL ENERGY ASSESSMENT

for

## NEW JERSEY BOARD OF PUBLIC UTILITIES

CHA PROJECT NO. 22215

December 2010

Prepared by:

## **CLOUGH HARBOUR & ASSOCIATES LLP**

6 Campus Drive Parsippany, NJ 07054

(973) 538-2120

## TABLE OF CONTENTS

|     |      | Page                                     |
|-----|------|------------------------------------------|
| 1.0 | INT  | RODUCTION & BACKGROUND1                  |
| 2.0 | EXE  | CUTIVE SUMMARY2                          |
| 3.0 | EXIS | STING CONDITIONS3                        |
|     | 3.1  | Building General                         |
|     | 3.2  | Utility Usage                            |
|     | 3.3  | HVAC Systems                             |
|     | 3.4  | Lighting/Electrical Systems              |
|     | 3.5  | Control Systems                          |
|     | 3.6  | Plumbing Systems                         |
| 4.0 | ENE  | RGY CONSERVATION MEASURES6               |
|     | 4.1  | ECM-1 Insulate Ceiling over Police Wing  |
|     | 4.2  | ECM-2 Boiler Replacement                 |
|     | 4.3  | ECM-3 Night Setback                      |
|     | 4.4  | ECM-4 Lighting Replacements              |
| 5.0 | INCI | ENTIVES OVERVIEW9                        |
|     | 5.1  | Incentives Overview                      |
|     | 5.2  | Building Incentives                      |
| 6.0 | ALT  | ERNATIVE ENERGY EVALUATION13             |
|     | 6.1  | Geothermal                               |
|     | 6.2  | Solar                                    |
|     | 6.3  | Wind                                     |
|     | 6.4  | Combined Heat and Power Generation (CHP) |
|     | 6.5  | Biomass Power Generation                 |
|     | 6.6  | Demand Response Curtailment              |
| 7.0 | EPA  | PORTFOLIO MANAGER17                      |
| 8.0 | CON  | CLUSIONS & RECOMMENDATIONS               |

## **APPENDICES**

- A Utility Usage Analysis
- B ECM-1 Increase Ceiling Insulation
- C ECM-2 Replace Boilers
- D ECM-3 Night Setback
- E ECM-4 Lighting Replacement
- F New Jersey Pay For Performance Incentive Program
- G Photovoltaic (PV) Rooftop Solar Power Generation
- H Solar Thermal Domestic Hot Water Plant
- I Wind
- J EPA Portfolio Manager
- K Equipment Inventory
- L Block Load Models

#### 1.0 INTRODUCTION AND BACKGROUND

The Linwood Municipal Building is a 13,000 square foot structure located at 400 Poplar Avenue, Linwood, NJ. The building is comprised of municipal offices and courtroom, and police wing. The municipal sector operates from 9:00 AM to 4:30 PM, Monday through Friday. The police wing is operated 24 hours per day with a separate entrance. Approximately 15 employees occupy the complex daily.

New Jersey's Clean Energy Program, funded by the New Jersey Board of Public Utilities, supports energy efficiency and sustainability for Municipal and Local Government Energy Audits. Through the support of a utility trust fund, New Jersey is able to assist state and local authorities in reducing energy consumption while increasing comfort.

#### 2.0 EXECUTIVE SUMMARY

This report details the results of the Linwood Municipal Building, a 13,000 square foot structure in Linwood, NJ. The building is comprised of municipal offices and courtroom, and police wing. Approximately 15 employees occupy the complex daily. The following areas were evaluated for energy conservation measures:

- Night setback
- Lighting replacement
- · Boiler replacement
- Insulation upgrades

Various potential Energy Conservation Measures (ECMs) were identified for the above categories. Potential annual savings of \$4,500 for the recommended ECMs may be realized with a payback of 0.7 years.

The ECMs identified in this report will allow for the building to reduce its energy usage and if pursued has the opportunity to qualify for the New Jersey SmartStart Buildings Program. A summary of the costs, savings, and paybacks for the recommended ECMs follows:

**ECM-3 Night Setback** 

| Budgetary<br>Cost |     | A        | nnual Utility Sa | vings |       | Estimated  Maintenance | Total<br>Savings | ROI | Potential Incentive* | Payback<br>(without | Payback<br>(with |
|-------------------|-----|----------|------------------|-------|-------|------------------------|------------------|-----|----------------------|---------------------|------------------|
|                   | Ele | ctricity | Natural Gas      | Water | Total | Savings                | 241,111,65       |     | meentive             | Incentive)          | Incentive)       |
| \$                | kW  | kWh      | Therms           | kGals | \$    | , <b>\$</b>            | \$               |     | \$                   | Years               | Years            |
| 1,000             | 0   | 7,000    | 2,570            | 0     | 4,200 | 0                      | 4,200            | 65  | NA                   | 0.2                 | · NA             |

<sup>\*</sup>There is no current incentive available through the NJ Smart Start Program. See section 5.0 for other incentive opportunities.

**ECM-4 Lighting Replacements** 

| <b>1</b>  |        |          |                  |       |       |             |         |     |            |            |            |
|-----------|--------|----------|------------------|-------|-------|-------------|---------|-----|------------|------------|------------|
| Budgetary |        | A        | nnual Utility Sa | vings |       | Estimated   | Total   |     | Potential  | Payback    | Payback    |
| Cost      |        |          |                  |       |       | Maintenance | Savings | ROI | Incentive* | (without   | (with      |
|           | Ele    | ctricity | Natural Gas      | Water | Total | Savings     |         |     |            | Incentive) | Incentive) |
| \$        | kW kWh |          | Therms           | kGals | \$    | \$          | \$      |     | \$         | Years      | Years      |
| 2,900     | 0      | 2,200    | 0                | 0     | 300   | 0           | 300     | 0.8 | 600        | 9.7        | 7.7        |

<sup>\*</sup>Incentive shown is per the New Jersey Smart Start Program, 2010 Prescriptive Lighting Application. See section 5.0 for other incentive opportunities.

In addition, the following measure is recommended if it qualifies for funding through the Direct Install Program (see section 5.2.4). Under this program, incentives can be potentially awarded for up to 60% of a project's budgetary cost with a maximum incentive of \$50,000, when the work is performed by a participating Direct Install contractor.

• ECM-2 Boiler Replacement

#### 3.0 EXISTING CONDITIONS

### 3.1 Building - General

The Linwood Municipal Building is a 13,000 square foot building which was renovated in 2006, including the building envelope and HVAC systems. The building has two main areas, the office areas and police wing. The municipal area is composed of office space, storage area, courtroom, and restrooms. The public area is open from 9:00 AM to 4:30 PM Monday through Friday and is occupied by about 15 people. The police wing has a separate entrance which is accessed 24 hours per day, and is occupied by about four people.

The exterior is finished with brick and siding; the police wing is mainly brick finish. All the walls have insulation, and building interior walls are finished with sheetrock and painted. There is a suspended ceiling in both the municipal and police areas. The main entrance to the building has new double pane vinyl windows; the remainder has wood framed windows. The entire building has a pitched roof with asphalt shingles.

### 3.2 Utility Usage

Utilities include electricity, natural gas, and water. Electricity is purchased from Atlantic City Electric with supply provided from New Energy, Inc. Natural gas supply and delivery is provided by South Jersey Gas Company, and potable water is provided by New Jersey American Water.

From June 2009 through April 2010, electric usage was approximately 294,280 kWh at a cost of about \$46,100. The May 2010 utility bills were not available. Analyzing electricity bills during this period showed that the building was charged at a blended unit cost of \$0.16 per kWh. Electricity usage was generally higher in the summer months due to air conditioning. During the timeframe of June 2009 through April 2010, the building heating and domestic hot water produced by natural gas-fired equipment required about 14,020 therms. Based on the annual cost of about \$16,800, the blended price for natural gas was \$1.20 per therm. Natural gas consumption is highest in the winter months when the building is in heating mode.

Review of potable water utility bills from October 2009 through September 2010 determined the facility used a total of 130,000 gallons of water over the course of a year. At a total cost of about \$1,300, the unit cost for water was \$9.90 per kGal. Utility data can be found in Appendix A.

Electricity supply and delivery are presently purchased from Atlantic City Electric and natural gas from South Jersey Gas Company. The delivery component will always be the responsibility of the utility that connects the facility to the power grid or gas line; however, the supply can be purchased from a third party. The electricity or natural gas commodity supply entity will require submission of one to three years of past energy bills. Contract terms can vary among suppliers. A list of approved electrical and natural gas energy commodity suppliers can be found in Appendix A. According to the U.S. Energy Information Administration, the average commercial unit costs of electricity and natural gas in New Jersey during July 2010 were \$0.152 per kWh and \$1.09 per therm. The building is currently paying above the state average for natural gas; therefore, it is recommended that a third party supplier be pursued. Electricity unit cost is on par with the state average.

#### 3.3 HVAC Systems

## 3.3.1 Space Heating and Air Conditioning System

The municipal section has two approximately 75% efficient Burnham gas fired natural draft boilers, with gas inputs of 462 BMH each. Hot water is circulated throughout the municipal section by two 3 HP base mounted pumps. Finned tube radiators in the perimeter offices provide space heating. There are three Carrier air handling units (AHUs) with DX and heating coils. One AHU serves the courtroom, the other two serve the remainder of the building.

The police wing has a single Weil McLain boiler with input of 175 BMH, and is about 80% efficient. The hot water is circulated to an AHU with heating coil manufactured by Trane. The Trane unit is a Climate Changer with a 5 HP fan motor and DX cooling coil. The wing has no radiators.

The municipal section utilizes three AHUs with DX coils to supply conditioned air. These units and condensers are less than three years' old. The police wing uses the single Trane Climate Changer which is a constant volume system with a cooling coil. The condenser is outside and is in average condition. Each cooling coil for the entire building has a separate condenser located outside on grade.

#### 3.3.2 Building Ventilation and Exhaust Systems

The building has ducts that supply fresh air to the AHUs. There is an exhaust fan for the municipal area restrooms. The police area has a separate restroom exhaust fan.

### 3.4 Lighting/Electrical Systems

Most of the fixtures in the municipal sector use two T-8 lamps with electronic ballasts. Several fixtures in the corridor had compact fluorescent bulbs. The police wing has four lamp T-12 fixtures and magnetic ballasts. Exterior lighting consists of five fixtures mounted to the sides of the building. The police area has a backup generator.

#### 3.5 Control Systems

#### 3.5.1 HVAC Controls

HVAC controls in the municipal portion consist of wall mounted thermostats in various rooms and a master thermostat in the hallway. Temperature setpoints vary throughout the main building area; on average, these are 70°F for heating and 72°F for cooling during occupied times. All the controls were programmable and connected to a master control panel on each AHU. The system uses a variable volume temperature (VVT) controls sequence which varies the supply temperature in the AHU.

The controls for the police wing consist of a single programmable thermostat located in the hallway; however, limited setback is performed because the wing is occupied continuously. The setpoints are 72°F cooling and 70°F heating.

#### 3.5.2 Lighting/Electrical Controls

Lighting controls are manual switches located within each space. The exterior lights are on a timer.

| 3.6 Plumbing Systems                                                                                                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Domestic hot water is generated by a 40 gallon, AO Smith gas-fired water heater with an input of 40,000 Btuh. It is in fair condition. The plumbing fixtures in the municipal sector are low flow type, and fixtures in the police wing are standard flow. |
|                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                            |
| ,                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                            |

#### 4.0 ENERGY CONSERVATION MEASURES

## 4.1 ECM-1 Insulate Ceiling over Police Wing

The area above the ceiling of the police wing has minimal insulation and allows conditioned air to escape. The existing insulation in this area is insufficient and this ECM assessed adding about nine inches of batt insulation. This would raise the thermal resistance, or R-value, from about R-17 to R-36.

To calculate the savings associated with adding insulation, the existing thermal losses through the roof were calculated with the existing insulation and compared with the thermal losses with the added batt insulation. The difference between the existing conditions and proposed conditions was taken and compared with yearly temperature bin data. The calculated savings associated with adding additional insulation would be approximately 300 therms of natural gas per year. There would also be cooling savings of 320 kWh since the space is air conditioned during the summer months.

Insulation has a life expectancy of about 20 years according to ASHRAE and the total energy savings over the life of the project would be about 6,000 therms and 6,400 kWh and \$8,000.

The implementation cost and savings related to this ECM are presented in Appendix B and summarized below:

**ECM-1 Insulate Ceiling Over Police Wing** 

| Budgetary<br>Cost |        | Annua   | l Utility Savings |       |      | Potential<br>Incentive* | Payback (without incentive) | Payback (with incentive) |
|-------------------|--------|---------|-------------------|-------|------|-------------------------|-----------------------------|--------------------------|
|                   | Elec   | tricity | Therms            | Total | ROI  |                         |                             | (                        |
| \$                | kW kWh |         | Natural Gas       | \$    |      | \$                      | Years                       | Years                    |
| 5,500             | 0      | 320     | 300               | 400   | 0.43 | NA                      | 14                          | NA                       |

<sup>\*</sup> There is no incentive available through the New Jersey Smart Start program for this ECM. See section 5.0 for other incentive opportunities.

This measure is not recommended.

#### 4.2 ECM-2 Boiler Replacement

The municipal section has two Burnham boilers with 462 MBH input while the police wing has a single Weil McLain boiler with 175 MBH input. Although the municipal area was recently renovated, the existing boilers were not replaced.

All three boilers are beyond their useful life and should be replaced. The average existing heating efficiency is estimated to be around 68%. This ECM evaluated replacing all the boilers with newer high efficiency, condensing boilers. Based on the utility bills, gas usage was over 14,000 therms. With the improved efficiency of new condensing boilers of approximately 92%, the natural gas savings is expected to be 3,000 therms.

For implementation of this measure, one new gas-fired, condensing, hot water boiler would be installed for the police wing and two new condensing boilers for the municipal wing. A new exhaust flue system will be required for each boiler.

Condensing boilers have an expected life of 20 years, according to ASHRAE, and total energy savings over the life of the project are estimated at 60,000 therms totaling \$70,000.

The implementation cost and savings related to this ECM are presented in Appendix C and summarized below:

ECM-2 Boiler Replacement

| Budgetary |                                     | Aı                | nnual Utility Sa | vings |         | Estimated   | Total   |       | Potential  | Payback    | Payback |
|-----------|-------------------------------------|-------------------|------------------|-------|---------|-------------|---------|-------|------------|------------|---------|
| Cost      |                                     |                   |                  |       |         | Maintenance | Savings | ROI   | Incentive* | (without   | (with   |
|           | Electricity Natural Gas Water Total |                   |                  |       | Savings |             |         |       | Incentive) | Incentive) |         |
| \$        | kW                                  | kWh               | Therms           | kGals | \$      | \$          | \$      |       | \$         | Years      | Years   |
| 181,000   | 0                                   | 0 0 3,000 0 3,500 |                  |       |         |             | 3,500   | (0.6) | 1,500      | >25        | >25     |

<sup>\*</sup> Incentive shown is per the New Jersey Smart Start Program, Gas Heating Application. Also, this measure is potentially eligible for Direct Install funding. See section 5.0 for other incentive opportunities.

This measure is not recommended.

#### 4.3 ECM-3 Night Setback

Heating and cooling is provided by the boilers and AHUs in the municipal section of the building. The existing controls use a constant temperature setpoint during unoccupied and occupied hours. The typical settings are 70°F in heating and 72°F in cooling mode.

To calculate the benefits of night setback, a block load building model was created to approximate the existing energy load. The block load, provided in Appendix L, models the maximum overall cooling and heating load for each space, taking into account various parameters such as roof, wall, and window construction; total envelope surface area; ventilation and infiltration loads; building occupancy; internal heat generation; and other sources of heat gains and losses. By entering this calculated maximum load into a spreadsheet containing bin temperature data, the total accumulated year-round cooling and heating energy requirements were determined. The heating and cooling loads were then combined and reconciled to building utility data and HVAC equipment energy requirements to confirm the model's accuracy. Bin data for Atlantic City, NJ was used. The bin temperature spreadsheets are included in Appendix L.

This measure will save energy by modifying the heating and cooling setpoints during the unoccupied times. It is intended to lower the heating set point to 60°F and cooling set point to 78°F during the unoccupied times.

For implementation of this measure, the existing controls will need to be reprogrammed to achieve the new schedule.

Controls equipment has an expected life of 15 years, according to ASHRAE, and total energy savings over the life of the project are estimated at 105,000 kWh, 38,550 therms, totaling \$63,000.

The implementation cost and savings related to this ECM are presented in Appendix D and summarized as follows:

**ECM-3 Night Setback** 

| Budgetary<br>Cost |                        | A                                   | nnual Utility Sa | vings |  | Estimated<br>Maintenance | Total<br>Savings | ROI | Potential Incentive* | Payback<br>(without | Payback<br>(with |
|-------------------|------------------------|-------------------------------------|------------------|-------|--|--------------------------|------------------|-----|----------------------|---------------------|------------------|
|                   | Elec                   | Electricity Natural Gas Water Total |                  |       |  |                          | , mgo            |     | meentive             | Incentive)          | Incentive)       |
| \$                | kW kWh Therms kGals \$ |                                     |                  |       |  | \$                       | \$               |     | \$                   | Years               | Years            |
| 1,000             | 0                      | 0 7,000 2,570 0 4,200               |                  |       |  | 0                        | 4,200            | 65  | NA                   | 0.2                 | NA               |

<sup>\*</sup>There is no current incentive available through the NJ Smart Start Program. See section 5.0 for other incentive opportunities.

This measure is recommended.

### 4.4 ECM-4 Lighting Replacements

During the site visit, a comprehensive fixture survey was conducted of the entire building. Each switch and circuit was identified, as well as the number of fixtures, locations, approximate operating times, and existing wattage consumption. There are a series of T-12 lamps and magnetic ballasts in the police wing which should be replaced to newer technology T-8 lamps and electronic ballasts.

Energy savings for this measure were calculated by applying the existing and proposed fixture wattages to the estimated time of operation to determine annual electricity consumptions. The difference resulted in an annual savings of about 2,200 kWh per year. Supporting calculations, including all assumptions for lighting hours and the annual energy usage for each fixture is provided in Appendix E.

Lighting has an expected life of 15 years, according to the manufacturer, and total energy savings over the life of the project are estimated at 33,000 kWh, totaling \$4,500.

The implementation cost and savings related to this ECM are presented in Appendix E and summarized below:

**ECM-4 Lighting Replacements** 

| Budgetary<br>Cost |      | A       | nnual Utility Sa | vings |       | Estimated  Maintenance | Total<br>Savings | ROI | Potential<br>Incentive* | Payback<br>(without | Payback             |
|-------------------|------|---------|------------------|-------|-------|------------------------|------------------|-----|-------------------------|---------------------|---------------------|
|                   | Elec | tricity | Natural Gas      | Water | Total | Savings                | Javings          | KOI | incentive               | (without Incentive) | (with<br>Incentive) |
| \$                | kW   | kWh     | Therms           | kGals | \$    | \$                     | \$               |     | \$                      | Years               | Years               |
| 2,900             | 0    | 2,200   | 0                | 0     | 300   | 0                      | 300              | 0.8 | 600                     | 9.7                 | 7.7                 |

<sup>\*</sup>Incentive shown is per the New Jersey Smart Start Program, 2010 Prescriptive Lighting Application. See section 5.0 for other incentive opportunities.

This measure is recommended.

#### 5.0 PROJECT INCENTIVES

#### 5.1 Incentives Overview

### 5.1.1 New Jersey Pay For Performance Program

The building will be eligible for incentives from the New Jersey Office of Clean Energy. The most significant incentives will be from the New Jersey Pay for Performance (P4P) Program. The P4P program is designed for qualified energy conservation projects in facilities whose demand in any of the preceding 12 months exceeds 200 kW. However, the 200 kW/month average minimum has been waived for buildings owned by local governments or municipalities and non-profit organizations. Facilities that meet this criterion must also achieve a minimum performance target of 15% energy reduction by using the EPA Portfolio Manager benchmarking tool before and after implementation of the measure(s). If the participant is a municipal electric company customer, and a customer of a regulated gas New Jersey Utility, only gas measures will be eligible under the Program. American Recovery and Reinvestment Act (ARRA) funding, when available, may allow oil, propane and municipal electric customers to be eligible for the P4P Program. Available incentives are as follows:

Incentive #1: Energy Reduction Plan – This incentive is designed to offset the cost of services associated with the development of the Energy Reduction Plan (ERP). The standard incentive pays \$0.10 per square foot, up to a maximum of \$50,000, not to exceed 50% of facility annual energy cost, paid after approval of application. For building audits funded by the New Jersey Board of Public Utilities, which receive an initial 75% incentive toward performance of the energy audit, facilities are only eligible for an additional \$0.05 per square foot, up to a maximum of \$25,000, rather than the standard incentive noted above.

Incentive #2: Installation of Recommended Measures – This incentive is based on projected energy saving and designed to pay approximately 60% of the total performance-based incentive. Base incentives deliver \$0.11/kWh and \$1.10/therm not to exceed 30% of total project cost.

Incentive #3: Post-Construction Benchmarking Report – This incentive is paid after acceptance of a report proving energy savings over one year utilizing the Environmental Protection Agency (EPA) Portfolio Manager benchmarking tool. Incentive #3 base incentives deliver \$0.07/kWh and \$0.70/therm not to exceed 20% of total project cost.

Combining incentives #2 and #3 will provide a total of \$0.18/kWh and \$1.8/therm not to exceed 50% of total project cost. Additional incentives for #2 and #3 are increased by \$0.005/kWh and \$0.05/therm for each percentage increase above the 15% minimum target to 20%, calculated with the EPA Portfolio Manager benchmarking tool, not to exceed 50% of total project cost.

### 5.1.2 New Jersey Smart Start Program

For this program, specific incentives for energy conservation measures are calculated on an individual basis utilizing the 2010 New Jersey Smart Start incentive program. This program provides incentives dependent upon mechanical and electrical equipment. If applicable, incentives from this program are reflected in the ECM summaries and attached appendices.

If the building qualifies and enters into the New Jersey Pay for Performance Program, all energy savings will be included in the total building energy reduction, and savings will be applied towards the Pay for Performance incentive. A project is not applicable for both New Jersey incentive programs.

## 5.1.3 Energy Efficient and Conservation Block Grant

Following is a brief summary of the Energy Efficient and Conservation Block Grant (EECBG) program. The Energy Efficiency and Conservation Block Grant Complete Program Application Package should be consulted for rules and regulations.

Additional funding is available to local government entities through the EECBG, a part of New Jersey's Clean Energy program (NJCEP). The grant is for local government entities only, and can offset the cost of energy reduction implementation to a maximum of \$20,000 per building.

This program is provided in conjunction with NJCEP funding and any utility incentive programs; the total amount of the three incentives combined cannot exceed 100% of project cost. Funds shall first be provided by NJCEP, followed by the EECBG and any utility incentives available to the customer. The total amount of the incentive shall be determined TRC Solutions, a third party technical consulting firm for the NJCEP.

In order to receive EECBG incentives, local governments must not have received a Direct Block Grant from the US Department of Energy. A list of the 512 qualifying municipalities and counties is provided on the NJCEP website. Qualifying municipalities must participate in at least one eligible Commercial & Industrial component of the NJCEP, utility incentive programs, or install building shell measures recommended by the Local Government Energy Audit Program. Eligible conservation programs through NJCEP include:

- Direct Install
- Pay for Performance
- NJ SmartStart Buildings for measures recommended by a Local Government Energy Audit (LGEA) or an equivalent audit completed within the last 12 months
- Applicants may propose to independently install building shell measures recommended by a LGEA or an equivalent audit. The audit must have been completed within the past 12 months.
- Any eligible utility energy efficiency incentive program

Most facilities owned or leased by an eligible local government within the State of New Jersey are eligible for this grant. Ineligible facilities include casinos or other gambling establishments, aquariums, zoos, golf courses, swimming pools, and any building owned or leased by the United States Federal Government. New construction is also ineligible.

## 5.1.4 ARRA Initiative "Energy Efficiency Programs through the Clean Energy Program"

The American Recovery and Reinvestment Act (ARRA) Initiative is available to New Jersey oil, propane, cooperative and municipal electric customers who do not pay the Societal Benefits Charge. This charge can be seen on any electric bill as the line item "SBC Charge." Applicants can participate in this program in conjunction with other New Jersey Clean Energy Program initiatives including Pay for Performance, Local Government Energy Audits, and Direct Install programs.

Funding for this program is dispersed on a first come, first serve basis until all funds are exhausted. The program does not limit the municipality to a minimum or maximum incentive, and the availability of funding cannot be determined prior to application. If the municipality meets all qualifications, the application must be submitted to TRC Energy Solutions for review. TRC will then determine the amount

of the incentive based on projected energy savings of the project. It is important to note that all applications for this incentive must be submitted before implementation of energy conservation measures.

Additional information is available on New Jersey's Clean Energy Program website.

#### 5.1.5 Direct Install Program

The Direct Install Program targets small and medium sized facilities where the peak electrical demand does not exceed 200 kW in any of the previous 12 months. Buildings must be located in New Jersey and served by one of the state's public, regulated electric or natural gas utility companies. On a case-by-case basis, the program manager may accept a project for a customer that is within 10% of the 200 kW peak demand threshold.

The 200 kW peak demand threshold has been waived for local government entities that receive and utilize their Energy Efficiency and Conservation Block Grant as discussed in section 5.1.3 in conjunction with Direct Install.

Direct Install is funded through New Jersey's Clean Energy Program and is designed to provide capital for building energy upgrade projects to fast track implementation. The program will pay up to 60% of the costs for lighting, HVAC, motors, natural gas, refrigeration, and other equipment upgrades with higher efficiency alternatives. If a building is eligible for this funding, the Direct Install Program can significantly reduce the implementation cost of energy conservation projects.

The program pays a maximum amount of \$50,000 per building, and up to \$250,000 per customer per year. Installations must be completed by a Direct Install participating contractor, a list of which can be found on the New Jersey Clean Energy Website at http://www.njcleanenergy.com. Contractors will coordinate with the applicant to arrange installation of recommended measures identified in a previous energy assessment, such as this document.

#### 5.2 Building Incentives

#### 5.2.1 New Jersey Pay For Performance Program

Under Incentive #1 of the New Jersey Pay for Performance Program, the Municipal Building is eligible for about \$700 toward development of an Energy Reduction Plan. When calculating the total amount under Incentives #2 and #3, all energy conservation measures are applicable as the amount received is based on building wide energy improvements. Since the overall energy reduction for the building is estimated to exceed the 15% minimum, the building is eligible to receive \$15,700 based as discussed above in section 5.1.1. See Appendix F for further calculation.

#### 5.2.2 New Jersey Smart Start Program

The building is eligible for several incentives available under New Jersey Smart Start Programs. The total amount of all qualified incentives is about \$2,100 and includes new lighting and boilers.

### 5.2.3 Energy Efficient and Conservation Block Grant

The building is owned by local government which makes it eligible for this incentive. The incentive amount is determined by TRC Solutions and is not calculable at this time. Further information about this incentive, including the application, can be found at:

 $\underline{http://www.njcleanenergy.com/commercial-industrial/programs/energy-efficiency-and-conservation-block-grants}$ 

## 5.2.4 ARRA Initiative "Energy Efficiency Programs through the Clean Energy Program"

The Municipal Building pays the Societal Benefits charge on their monthly utility bill and therefore is not eligible for this incentive.

### 5.2.5 Direct Install Program

The building is potentially eligible to receive funding from the Direct Install Program. This money can be in conjunction with the Energy Efficiency and Conservation Block Grant. The total implementation cost for the eligible ECMs for Direct Install funding is about \$190,100. This includes new boilers and lighting fixtures. This program would pay 60% of these initial costs or \$114,100. This funding has the potential to significantly affect the payback periods of Energy Conservation Measures. For the Municipal Building, the Direct Install Program brings the simple payback to approximately 18 years.

#### 6.0 ALTERNATIVE ENERGY SCREENING EVALUATION

#### 6.1 Geothermal

Geothermal heat pumps (GHP) transfer heat between the constant temperature of the earth and the building to maintain the building's interior space conditions. Below the surface of the earth throughout New Jersey the temperature remains in the low 50°F range throughout the year. This stable temperature provides a source for heat in the winter and a means to reject excess heat in the summer. With GHP systems, water is circulated between the building and the piping buried in the ground. The ground heat exchanger in a GHP system is made up of a closed or open loop pipe system. Most common is the closed loop in which high density polyethylene pipe is buried horizontally at 4-6 feet deep or vertically at 100 to 400 feet deep. These pipes are filled with an environmentally friendly antifreeze/water solution that acts as a heat exchanger. In the summer, the water picks up heat from the building and moves it to the ground. In the winter the system reverses and fluid picks up heat from the ground and moves it to the building. Heat pumps make collection and transfer of this heat to and from the building possible.

The building uses 3 gas-fired, hot water boilers and split system AHUs with DX cooling to meet the HVAC requirements. The air handlers would have to be replaced and significant piping changes would need to occur so this measure is not recommended.

#### 6.2 Solar

#### 6.2.1 Photovoltaic Rooftop Solar Power Generation

The facility was evaluated for the potential to install rooftop photovoltaic (PV) solar panels for power generation. Present technology incorporates the use of solar cell arrays that produce direct current (DC) electricity. This DC current is converted to alternating current (AC) with the use of an electrical device known as an inverter. The building's roof has sufficient room to install a solar cell array. A structural analysis would be required to determine if the roof framing could support a cell array.

The PVWATTS solar power generation model was utilized to calculate PV power generation. The New Jersey Clean Power Estimator provided by the New Jersey Clean Energy Program is presently being updated; therefore, the site recommended use of the PVWATT solar grid analyzer version 1. The closest city available in the model is Atlantic City, New Jersey and a fixed tilt array type was utilized to calculate energy production. The PVWATT solar power generation model is provided in Appendix G.

The State of New Jersey incentives for non-residential PV applications is \$0.75/watt up to 30 kW of installed PV array with a maximum system capacity of 50 kW. Federal tax credits are also available for renewable energy projects up to 30% of installation cost. Municipalities do not pay federal taxes; therefore, would not be able to utilize the federal tax credit incentive.

Installation of (PV) arrays in the state New Jersey will allow the owner to participate in the New Jersey solar renewable energy certificates program (SREC). This is a program that has been set up to allow entities with large amounts of environmentally unfriendly emissions to purchase credits from zero emission (PV) solar-producers. An alternative compliance penalty (ACP) is paid for by the high emission producers and is set each year on a declining scale of 3% per year. One SREC credit is equivalent to 1000 kilowatt hours of PV electrical production; these credits can be traded for period of 15 years from the date of installation. The cost of the ACP penalty for 2009 is \$700; this is the amount that must be paid per SERC by the high emission producers. The expected dollar amount that will be paid to the PV producer for 2010 is expected to be \$600/SREC credit. Payments that will be received from the PV

producer will change from year to year dependent upon supply and demand. Renewable Energy Consultants is a third party SREC broker that has been approved by the New Jersey Clean Energy Program. As stated above there is no definitive way to calculate an exact price that will be received by the PV producer per SREC over the next 15 years. Renewable Energy Consultants estimated an average of \$487/ SERC per year and this number was utilized in the cash flow for this report.

The building roof size justifies the use of a 10kW solar array. The system costs for PV installations were estimated as \$7 per watt or \$7,000 per kW of installed system. This has increased in the past few years due to the rise in national demand for PV power generator systems. Other cost considerations will also need to be considered. PV panels have an approximate 20 year life span; however, the inverter device that converts DC electricity to AC has a life span of 10 to 12 years and will need to be replaced multiple times during the useful life of the PV system.

The implementation cost and savings related to this ECM are presented in Appendix G and summarized as follows:

Photovoltaic (PV) Rooftop Solar Power Generation - 10 kW System

| Budgetary<br>Cost | Annual Utility Savings |        |             |       | Total<br>Savings | New Jersey Renewable Energy Incentive* | New<br>Jersey<br>Renewable<br>SREC** | Payback<br>(without<br>incentive) | Payback<br>(with<br>incentives) |
|-------------------|------------------------|--------|-------------|-------|------------------|----------------------------------------|--------------------------------------|-----------------------------------|---------------------------------|
|                   | Elect                  | ricity | Natural Gas | Total |                  |                                        |                                      |                                   | Í                               |
| \$                | kW                     | kWh    | Therms      | \$    | \$               | \$                                     | \$                                   | Years                             | Years                           |
| 70,000            | 0                      | 12,503 | 0           | 1,800 | 1,800            | 10,000                                 | 6,100                                | >25                               | 7.6                             |

<sup>\*</sup>Incentive based on New Jersey Renewable Energy Program for non-residential applications of \$0.75 per Watt of installed capacity
\*\* Estimated Solar Renewable Energy Certificate Program (SREC) for 15 years at \$487/1000 kWh

While the payback period is within the parameters for recommended measures, further investigation of possible installation locations, required system maintenance, and local installation costs are suggested prior to consideration for implementation.

#### 6.2.2 Solar Thermal Hot Water Plant

Active solar thermal systems use solar collectors to gather the sun's energy to heat water, another fluid, or air. An absorber in the collector converts the sun's energy into heat. The heat is then transferred by circulating water, antifreeze, or sometimes air to another location for immediate use or storage for later utilization. Applications for active solar thermal energy include providing hot water, heating swimming pools, space heating, and preheating air in residential and commercial buildings.

A standard solar hot water system is typically composed of solar collectors, heat storage vessel, piping, circulators, and controls. Systems are typically integrated to work alongside a conventional heating system that provides heat when solar resources are not sufficient. The solar collectors are usually placed on the roof of the building, oriented south, and tilted around the site's latitude, to maximize the amount of radiation collected on a yearly basis.

Several options exist for using active solar thermal systems for space heating. The most common method involves using glazed collectors to heat a liquid held in a storage tank (similar to an active solar hot water system). The most practical system would transfer the heat from the panels to thermal storage tanks and transfer solar produced thermal energy to use for domestic hot water production. DHW is presently produced by a gas fired water heater and, therefore, this measure would offer natural gas savings.

Currently, an incentive is not available for installation of thermal solar systems. A Federal tax credit of 30% of installation cost for the thermal applications is available; however, the City of Linwood does not pay Federal taxes and, therefore, would not benefit from this program.

The implementation cost and savings related to this ECM are presented in Appendix H and summarized as follows:

| Budgetary<br>Cost |        | Annua   | l Utility Savings     |     | Total<br>Savings | New Jersey<br>Renewable<br>Energy<br>Incentive | Payback<br>(without<br>incentive) | Payback (with incentive) |  |
|-------------------|--------|---------|-----------------------|-----|------------------|------------------------------------------------|-----------------------------------|--------------------------|--|
|                   | Elect  | tricity | ity Natural Gas Total |     |                  |                                                |                                   |                          |  |
| \$                | kW kWh |         | Therms \$             |     | \$               | \$                                             | Years                             | Years                    |  |
| 27,100            | 0 0    |         | 170                   | 200 | 200              | NA                                             | >25                               | NA                       |  |

<sup>\*</sup> No incentive is available in New Jersey at this time.

This measure is not recommended.

#### 6.3 Wind

Small wind turbines use a horizontal axis propeller, or rotor, to capture the kinetic energy of the wind and convert it into rotary motion to drive a generator which usually is designed specifically for the wind turbine. The rotor consists of two or three blades, usually made from wood or fiberglass. These materials give the turbine the needed strength and flexibility, and have the added advantage of not interfering with television signals. The structural backbone of the wind turbine is the mainframe, and includes the sliprings that connect the wind turbine, which rotates as it points into changing wind directions, and the fixed tower wiring. The tail aligns the rotor into the wind.

To avoid turbulence and capture greater wind energy, turbines are mounted on towers. Turbines should be mounted at least 30 feet above any structure or natural feature within 300 feet of the installation. Smaller turbines can utilize shorter towers. For example, a 250-watt turbine may be mounted on a 30-50 foot tower, while a 10 kW turbine will usually need a tower of 80-120 feet. Tower designs include tubular or latticed, guyed or self-supporting. Wind turbine manufacturers also provide towers.

The New Jersey Clean Energy Program for small wind installations has designated numerous preapproved wind turbines for installation in the State of New Jersey. Incentives for wind turbine installations are based on kilowatt hours saved in the first year. Systems sized under 16,000 kWh per year of production will receive a \$3.20 per kWh incentive. Systems producing over 16,000 kWh will receive \$51,200 for the first 16,000 kWh of production with an additional \$0.50 per kWh up to a maximum cap of 750,000 kWh per year. Federal tax credits are also available for renewable energy projects up to 30% of installation cost for systems less than 100 kW. However, as noted previously, municipalities do not pay federal taxes and is, therefore, not eligible for the tax credit incentive.

The most important part of any small wind generation project is the mean annual wind speed at the height of which the turbine will be installed. The building may have enough wind speed to support a wind turbine. A wind speed map and aerial site photo are included in Appendix I. The location of the building outside of a dense residential area and good potential for wind speed make this an option to explore further with yendors.

#### 6.4 Combined Heat and Power Generation (CHP)

Combined heat and power, cogeneration, is self-production of electricity on-site with beneficial recovery of the heat byproduct from the electrical generator. Common CHP equipment includes reciprocating engine-driven, micro turbines, steam turbines, and fuel cells. Typical CHP customers include industrial, commercial, institutional, educational institutions, and multifamily residential facilities. CHP systems that are commercially viable at the present time are sized approximately 50 kW and above, with numerous options in blocks grouped around 300 kW, 800 kW, 1,200 kW and larger. Typically, CHP systems are used to produce a portion of the electricity needed by a facility some or all of the time, with the balance of electric needs satisfied by purchase from the grid.

This measure is not recommended since the facility cannot use the waste heat in the summer months.

#### 6.5 Biomass Power Generation

Biomass power generation is a process in which waste organic materials are used to produce electricity or thermal energy. These materials would otherwise be sent to the landfill or expelled to the atmosphere. To participate in NJCEP's Customer On-Site Renewable Energy program, participants must install an on-site sustainable biomass or fuel cell energy generation system. Incentives for bio-power installations are available to support up to 1MW-dc of rated capacity.

\*Class I organic residues are eligible for funding through the NJCEP CORE program. Class I wastes include the following renewable supply of organic material:

- Wood wastes not adulterated with chemicals, glues or adhesives
- Agricultural residues (corn stover, rice hulls or nut shells, manures, poultry litter, horse manure, etc) and/or methane gases from landfills
- · Food wastes
- · Municipal tree trimming and grass clipping wastes
- Paper and cardboard wastes
- · Non adulterated construction wood wastes, pallets

The NJDEP evaluates biomass resources not identified in the RPS.

Examples of eligible facilities for a CORE incentive include:

- Digestion of sewage sludge
- · Landfill gas facilities
- · Combustion of wood wastes to steam turbine
- Gasification of wood wastes to reciprocating engine
- · Gasification or pyrolysis of bio-solid wastes to generation equipment

This measure is not recommended due to of noise issues and because the building does not have a steady waste stream to fuel the power generation system

<sup>\*</sup> from NJOCE Website

#### 7.0 EPA PORTFOLIO MANAGER

The United States Environmental Protection Agency (EPA) is a federal agency in charge of regulating environment waste and policy in the United States. The EPA has released the EPA Portfolio Manager for public use. The program is designed to allow property owners and managers to share, compare and improve upon their facility's energy consumption. Inputting such parameters as electricity, heating fuel, building characteristics and location into the website based program generates a naturalized energy rating score out of 100. Once an account is registered, monthly utility data can be entered to track the savings progress and retrieve an updated energy rating score on a monthly basis.

The building has one gas meter and one electric meter for both the municipal section and police section. Since the police area is over 10% of the total size of the building, the EPA Portfolio Manager software cannot provide a score.

A full EPA Energy Star Portfolio Manager Report is located in Appendix J.

The user name and password for the building's EPA Portfolio Manager Account has been provided to Hank Kolakowski.

## 8.0 CONCLUSIONS & RECOMMENDATIONS

The energy audit conducted by CHA at the Linwood Municipal Building in Linwood, New Jersey identified potential ECMs for night setback and lighting replacement. Potential annual savings of \$4,500 may be realized for the recommended ECMs, with a summary of the costs, savings, and paybacks as follows:

**ECM-3 Night Setback** 

| Budgetary<br>Cost |        | A        | nnual Utility Sa | vings |       | Estimated  Maintenance | Total<br>Savings | ROI | Potential | Payback<br>(without | Payback<br>(with |
|-------------------|--------|----------|------------------|-------|-------|------------------------|------------------|-----|-----------|---------------------|------------------|
|                   | Ele    | ctricity | Natural Gas      | Water | Total | Savings                |                  |     |           | Incentive)          | Incentive)       |
| <u>s</u>          | kW kWh |          | Therms           | kGals | \$    | \$                     | \$               |     | \$        | Years               | Years            |
| 1,000             | 0      | 7,000    | 2,570            | 0     | 4,200 | 0                      | 4,200            | 65  | NA        | 0.2                 | NA               |

<sup>\*</sup>There is no current incentive available through the NJ Smart Start Program. See section 5.0 for other incentive opportunities.

**ECM-4 Lighting Replacements** 

|   | Budgetary<br>Cost |      | A        | nnual Utility Sa | vings |       | Estimated<br>Maintenance | Total<br>Savings | ROI | Potential<br>Incentive* | Payback<br>(without | Payback<br>(with |
|---|-------------------|------|----------|------------------|-------|-------|--------------------------|------------------|-----|-------------------------|---------------------|------------------|
|   |                   | Elec | etricity | Natural Gas      | Water | Total | Savings                  | Da i ingo        | Kor | meentive                | Incentive)          | Incentive)       |
| L | \$                | kW   | kWh      | Therms           | kGals | \$    | \$                       | \$               |     | \$                      | Years               | Years            |
| L | 2,900             | 0    | 2,200    | 0                | 0     | 300   | 0                        | 300              | 0.8 | 600                     | 9.7                 | 7.7              |

<sup>\*</sup>Incentive shown is per the New Jersey Smart Start Program, 2010 Prescriptive Lighting Application. See section 5.0 for other incentive opportunities.

## **APPENDICES**

- A
- Utility Usage Analysis
  ECM-1 Increase Ceiling Insulation
  ECM-2 Replace Boilers В
- $\mathbf{C}$
- ECM-3 Night Setback D
- E
- ECM-4 Lighting Replacement
  New Jersey Pay For Performance Incentive Program
  Photovoltaic (PV) Rooftop Solar Power Generation F
- G
- Solar Thermal Domestic Hot Water Plant H
- Wind I
- J EPA Portfolio Manager
- Equipment Inventory Block Load Models K
- L

## APPENDIX A

Utility Usage Analysis

City of Linwood CHA Project Number: 22215 City Hail

Oak & Poplar Ave Account Number: Meter Number:

|                |             | -      |             |                   |                     |                |             |              |             |         |
|----------------|-------------|--------|-------------|-------------------|---------------------|----------------|-------------|--------------|-------------|---------|
|                |             |        |             |                   | Charges             |                |             |              | Unit Costs  |         |
|                | Consumption | Demand | Total       | Supply            | Delivery            | Demand         | Consumption | Blended Bate | Consumption | Demand  |
| Month          | (kWh)       | (KW)   | (\$)        | : <del>(9</del> ) | · ( <del>\$</del> ) | <del>(S)</del> | (\$)        | (\$/kWh)     | (\$/kWh)    | (\$/kW) |
| June-09        | 26,320      | 73.2   | \$4,389.18  | \$3,522.71        | \$866.47            | \$0.00         | \$4,389,18  | 0.1668       | 0.1668      | ,       |
| 3uly-09        | 34,080      | 72.4   | \$5,503.08  | \$4,521.71        | \$981.37            | 80.00          | \$5,503,08  |              | 0.1615      | -<br>,  |
| Angust-09      | 34,080      | 72.4   | \$5,503.08  | \$3,469.02        | \$844,23            | 80.00          | \$5,503,08  | 0.1615       | 0.1615      |         |
| September-09   | 26,120      | 66.4   | \$4,313.25  | \$2,838.92        | \$852.28            | \$0.00         | \$4,313.25  |              | 0.1651      | ,       |
| October-09     | 25,560      | 66.4   | \$3,691.20  | \$2,943.14        | \$796,35            | \$0.00         | \$3,691.20  |              | 0.1444      | •       |
| November-09    | 26,720      | 57.2   | \$3,739.49  | \$2,947.03        | \$850,20            | \$0.00         | \$3,739,49  |              | 0.1400      |         |
| December-09    | 26,640      | 57.2   | \$3,797.23  | \$2,690.54        | \$727.22            | 80,00          | \$3,797,23  |              | 0.1425      | •       |
| January-10     | 24,440      | 48.8   | \$3,417.76  | \$2,748.31        | \$774.98            | 80.00          | \$3,417,76  |              | 0.1398      | 1       |
| February-10    | 24,920      | 46.0   | \$3,098.97  | \$2,387.20        | \$711.77            | 80.00          | \$3,098.97  |              | 0.1244      | •       |
| March-10       | 21,560      | 47.2   | \$4,288.27  | \$3,468.81        | \$819.46            | 80.00          | \$4 288 27  |              | 0 1989      | 1       |
| April-10       | 23,840      | 64.4   | \$4,394.46  | \$3,468.81        | \$925.65            | \$0.00         | \$4,394.46  | 0.1843       | 0.1843      | •       |
| Total          | 294,280     |        | \$46,135.97 | \$35,006.20       | \$9,149.98          | \$0.00         | \$46,135.97 |              | 0.1568      | 1       |
| Most Recent Yr | 294,280     |        | \$46,135.97 | \$35,006,20       | \$9.149.98          | \$0.00         | \$46,135.97 | 0.1568       | 0.1568      |         |



"% of 180 "% of 90

120.0

| Walls   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |                |                                                                              |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------|------------------------------------------------------------------------------|
| Almeth  | Width (ft) Height (ft) Quantity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 | Lineal Feet    | **************************************                                       |
| North   | 40.0 25.0 2<br>40.0 9.0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2000.0<br>360.0 | 260.0<br>98.0  |                                                                              |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0             | 0.0            | \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0             | 0.0            |                                                                              |
|         | 80.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0<br>2360.0   | 0.0<br>358.0   | Ave. height 29.5 Average height wall                                         |
|         | 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2000.0          | 300.0          | automatically linked                                                         |
| East    | 115.0 25.0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2875.0          | 280.0          |                                                                              |
| ması    | 110.0 9.0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 | 238.0          |                                                                              |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0             | 0.0            |                                                                              |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0             | 0.0            | •                                                                            |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,0<br>0.0      | 0.0<br>0.0     |                                                                              |
|         | 225.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3865.0          | 518.0          | 17.2 Average height wall                                                     |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 | •              | automatically linked                                                         |
| South   | 120.0 25.0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3000.0          | 290.0          |                                                                              |
|         | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | XI              | 0.0            |                                                                              |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0<br>0.0      | 0.0<br>0.0     |                                                                              |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0             | 0.0            | Ave. height                                                                  |
|         | 120.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3000.0          | 290.0          | 25.0 Average height wall                                                     |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |                | automatically linked                                                         |
| West    | 100.0 25.0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2500.0          | 250.0          |                                                                              |
|         | 110.0 9.0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ,               | 238.0          |                                                                              |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0<br>0.0      | 0,0<br>0,0     |                                                                              |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0             |                | Ave. height                                                                  |
|         | 210.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3490.0          | 488.0          | 16.6 Average height auto linked to block load sheet                          |
| Windows | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                |                                                                              |
|         | Width (ft) Height (ft) Quantity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Area (SF)       | Lineal Feet    |                                                                              |
| North   | 3.0 5.0 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30.0<br>0.0     | 32.0<br>0.0    |                                                                              |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0             | 0.0            |                                                                              |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0             | 0.0            |                                                                              |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0<br>0.0      | 0.0<br>0.0     |                                                                              |
|         | Sub-total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30.0            | 32,0           |                                                                              |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |                |                                                                              |
| East    | 4:0 7:0 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 140.0           | 110.0          |                                                                              |
|         | 3.0 5.0 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | 0.08           |                                                                              |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0<br>0.0      | 0.0<br>0.0     |                                                                              |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0             | 0.0            |                                                                              |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0             | 0,0            |                                                                              |
|         | Sub-total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 215.0           | 190,0          |                                                                              |
| South   | 6:0 6:0 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | 96.0           |                                                                              |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0             | 0.0            |                                                                              |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0<br>0.0      | 0.0<br>0.0     |                                                                              |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0             | 0.0            |                                                                              |
|         | Sub-total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0<br>144.0    | 96.0           |                                                                              |
|         | IBIOJ-uno                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 144.0           | <b>90'∩</b>    |                                                                              |
| West    | 4.0 7.0 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 140.0           | 110,0          |                                                                              |
| 44 G91  | 3.0 5.0 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | 96,0           |                                                                              |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0             | 0.0            |                                                                              |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0<br>0.0      | 0.0<br>0,0     |                                                                              |
|         | <ul> <li>— 2. 32.550 per secondo reportado reportado de 200 (1020 filoso 1020 filoso 1</li></ul> | U.U             | 0,0            |                                                                              |
|         | Sub-total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 230.0           | 206.0          |                                                                              |
|         | Sub-total<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 230.0<br>619.0  | 206.0<br>524.0 | LF/SF<br>0.85                                                                |

Building Volume Calculator
Width(ft) Length (ft) Height(ft) Count Volume (cf)
100 40 9 1 36,000

## City of Linwood,NJ CHA #22215 Building: City Hall

| Doors |                                         |             |                                       |             |             |       |
|-------|-----------------------------------------|-------------|---------------------------------------|-------------|-------------|-------|
|       | Width (ft)                              | Height (ft) | Quantity                              | Area (SF)   | Lineal Feet |       |
| North | (A) |             |                                       | 0.0         | 0.0         |       |
|       |                                         |             |                                       | 0.0         | 0.0         |       |
|       |                                         |             |                                       | 0.0         | 0.0         |       |
|       |                                         |             |                                       | 0.0         | 0.0         |       |
|       |                                         |             |                                       | 0.0         | 0.0         |       |
|       |                                         |             |                                       | . 0.0       | 0.0         |       |
|       |                                         | 45,10       | Sub-total                             | 0.0         | 0.0         |       |
|       |                                         |             |                                       |             |             |       |
| East  | 3.0                                     | 5,0         | · · · · · · · · · · · · · · · · · · · | 47.0        | 40.0        |       |
| East  | 3.0                                     | 9.0         | 3                                     | 45.0<br>0.0 | 48.0        |       |
|       |                                         |             |                                       | 0.0         | 0.0         |       |
|       |                                         |             | Sub-total                             | 45.0        | 0.0<br>48.0 |       |
|       |                                         |             | Oub-tota                              | 45.0        | 40.0        |       |
|       |                                         |             |                                       |             |             |       |
| South | 7.0                                     | 6.0         | 1                                     | 42.0        | 26.0        |       |
|       |                                         |             |                                       | 0.0         | 0.0         |       |
|       |                                         |             |                                       | 0.0         | 0.0         |       |
|       | .00                                     |             |                                       | 0.0         | 0.0         |       |
|       |                                         |             | Sub-total                             | 42.0        | 26.0        |       |
|       |                                         |             |                                       |             |             |       |
|       |                                         |             |                                       |             |             |       |
| West  |                                         |             |                                       | 0.0         | 0.0         |       |
|       |                                         |             |                                       | 0.0         | 0.0         |       |
|       |                                         |             | Sub-total                             | 0.0         | 0.0         |       |
|       |                                         |             |                                       |             |             | LF/SF |
|       |                                         |             | Total                                 | 87.0        | 74.0        | 0.85  |
|       |                                         |             |                                       |             | -           |       |

## **HEAT GAIN/LOSS WORKSHEET**

Project Name: Location Building Name Engineer:

|             | 9-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | 67.46.2.33                                                                                                     |            | ***  |                  |
|-------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------|------------|------|------------------|
| City of Lis | nwood NJ                                |                                                                                                                | 404        |      | a Selection      |
| Linwood;    | NJ                                      | 200                                                                                                            |            | 70 C | 100              |
| City Hall   |                                         |                                                                                                                |            |      | SERVICE SERVICES |
| Frank Cir   | ttita                                   | de la companya de la | DE TOMORNO |      | 195035           |

| GEORGE STEELS SCHOOL STEELS |           | 466        |
|-----------------------------|-----------|------------|
| Project No.:                | CHA#22215 |            |
|                             | 17        |            |
| Date:                       |           | STREET, SA |
|                             |           |            |

Specific Volume

14.00 CF/#

106,380 Blu/h

Building/Facility Designation

City Hall

#### LATENT COOLING LOADS

Infiltration

| 200     | The Committee of the Control of | 1232                      | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.5 Carrier 10.5      | 11 6 2 2 Cart A. C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 27.77                                          |                                         | 28 700 3070 70                          | ローレックしき ドラス・レ         | 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | * 10 To 10 T |                                          | STATE OF THE PARTY |
|---------|---------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 200     | Sec. 25.00                      |                           | SECTION 555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       | 10 miles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                | ration F                                | actor :                                 |                       | Air Densi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16500000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | งเมากโสโสเส                              | Ratio Dif.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2500    | 200                             | The state of the state of | Sec. 11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S 11/1/11             | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | / / / · · · · · · · · · · · · · · · · ·        | Charles Control                         | 100000000000000000000000000000000000000 | S4455-3748-57-1       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 100 100 100 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          | 1 continue militia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Walt    | - 1273/ 227                     | dillo della               | Total Land Com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 70.000                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.5.5.5.6.00                                   | 2.2255 Same                             |                                         |                       | 100000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| wan     | 5 1517 259                      | 143974234                 | 4951 07974                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20.285                | <b>3</b> 250,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.75                                           | 1921 U.S.                               | 5 CFM/                                  | 200                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 629                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0042 #                                 | IN THE CARRY SEC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 40000   |                                 | the same                  | 12-1-13-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Commence              | 10-10-10 Page 11-10-10-10-10-10-10-10-10-10-10-10-10-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 87.77.20 Miles                                 | 100 C                                   | distribution of                         | and the second second | The state of the s | 1300000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          | 257 650 753 753                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Doo     | Sec. 15.1111.6                  | 3 350 3500                | dorn Story                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15 15 15 10 10 TO     | SF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100                                            | 2000 CM                                 | O OF LA                                 | a                     | 25-24-914-7-23-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | POO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0040                                   | ALC: NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         | D 1000 1707                     | 1200111111111             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | OF JUNE 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 200                                            | 100 Oct 10.2                            | 0 CFM/                                  | 25012000              | 12/1/ Signature 12:44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 629                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0042#                                  | ** 5-15-20-16-5-5-5-16-6-5-5-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |                                 | 1667 192                  | ASSESS OF THE PARTY OF THE PART | 27 - 11/11/11         | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2011 20 11 12 12 12 12 12 12 12 12 12 12 12 12 | Section Course                          | A 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  | The second second     | Control of the Contro | 200 1 200 1 200 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Million of the State                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| win     | dows                            | All to day                | Section 18 Section 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 34 M.SA # 12          | SF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D. Office St.                                  | Steel O O                               | O CFM/                                  | 2 Standard            | \$68.00 Oct. 655.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ODO GOOWS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | O 0040 SH                                | 115 (1977)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 44415   | ACTES -                         | 150 35 40 6 75            | 12.50 A 10.50 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | 1.28351376                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2000                                           | 1000 A 1114                             | <b>U. U. NU</b>                         | ACC CONTRACT          | 3372 (1864) (1874)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .629                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0042:#                                 | # 16 COM PERSONS CO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 11.00   | at the section                  |                           | 150000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 277774621437          | 100 CHA 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                | 11/11/11/11                             | POST 5 (1997) 112                       |                       | 24.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Partie of the State of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.10.8845.200                            | 2367 House Commonwe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Vont    | ilation                         |                           | 200000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.000                 | 100 83.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | and the second                                 | 630 630                                 | 200                                     | 11.57-15-55           | Day (Sp. 1927)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 629                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0042 #                                 | 10 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         | INCOVII                         | 1 165112 1.623            | 534400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Siff Comment          | 200 Miles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | San San San San                                | 100000000000000000000000000000000000000 | SECTION                                 | 200                   | 25.00001666267                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ULJ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ひんししゃんごか                                 | # 1000 Con 100 Con 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 27/11/2 | 200                             | 0.000                     | Sec. 20. 15. 15. 15.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A Charles See See See | Contract of the Contract of th | 1500-11                                        | CONTRACTOR STORY                        | 10200                                   | 127.07.17.75          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SALAN CONTRACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 2 2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Peor    |                                 |                           | 2001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 96 20 2               | people                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -11-57116                                      | 11/50 13 1                              | n time i                                | n space               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | つてい ロ                                    | tu/hr/oerson                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|         |                                 |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                         |                                         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

SHR=

Cooling Load Summary

|       | erature Depe |         |       | 100 | ible<br>208,44<br>81,30 | Constitution of |          | Latent<br>1 | 06,380<br>Ol |        | Tot      | 314 | 1,828<br>1,304 |  |
|-------|--------------|---------|-------|-----|-------------------------|-----------------|----------|-------------|--------------|--------|----------|-----|----------------|--|
| Total |              | (E. 67) | 2 4 8 |     | 289,75                  | 2 0 /           | S 18 (2) | 11          | 06,380       | (40.2) | 40.10.10 |     | ,132           |  |

0.73

**Building Cooling Load** 

33.0 Tons at

402 SF/Ton

Building Air Flow to Condition Space based on a 12°F Temp Rise is

22,127 CFM 1.67 CFMsf

#### **HEATING CALCULATION**

CONDUCTION

|                | NEI    |         | Heating    |
|----------------|--------|---------|------------|
|                | AREA   | U-VALUE | Load Temp. |
|                | (SF)   |         | Dif.       |
| North Exposure | 2,330  | 0.07    | 58         |
| East Exposure  | 3,605  | 0.07    | 58         |
| South Exposure | 2,814  | 0.07    |            |
| West Exposure  | 3,260  | . 0.07  | - 58       |
| Fenestration   | 619    | 0.50    |            |
| Roof           | 13,285 | 0.06    | 58         |
| Doors          | 87     | 0.14_   | 58         |
| Ceiling        | 13,285 | 0.14    | 0          |
| Partition      | 0      | 0.05    | 0          |
| Floor          | 13,285 | 0.04    | 10         |
|                |        |         |            |

| ĸ | 001   | n. | N. | at | ш   | a i  | n  |
|---|-------|----|----|----|-----|------|----|
|   | UCSEW |    |    |    | 146 | 22 C | v. |

| 681 |              |
|-----|--------------|
|     | 8,888 Btu/h  |
|     | 13,752 Btu/h |
| X.  | 10,735 Btu/h |
|     | 12,436 Btu/h |
|     | 17,951 Btu/h |
|     | 43,808 Btu/h |
| ×   | 705 Btu/h    |
| Ø.  | 0 Btu/h      |
|     | 0 Btu/h      |
| 3/2 | 5,314 Btu/h  |

Ventilation and Infiltration

| Walls 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Infiltrat<br>1.009 SF | on Factor C<br>0.15 CFM/SF |              | emp. Difference | Air Flow            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------|--------------|-----------------|---------------------|
| Doors 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ,009 SF<br>- 87 SF    | 0.20 CFM/LF                | 1.04<br>1.04 | 58<br>58        | 1,801 cfm<br>15 cfm |
| A CONTRACTOR OF THE PROPERTY O | 619 SF                | 0.20 CFM/LF                | 1.04         | 58              | 105 ctm             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,000 cfm              |                            | 1.04         | 58              | 2,000 cfm           |
| Total Ventilation & Infiltration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LOAD                  |                            |              |                 | 3,921 cfm           |

| NUOIII  | neal Gain |
|---------|-----------|
| 109,055 | Btu/h     |
| 896     | Btu/h     |
| 6,345   | Bhu/h     |
| 130,76  | 8 Blu/h   |
| 247,08  | 4 Blu/h   |

| Building Heating Load 360,654 btu/h |
|-------------------------------------|
|                                     |
|                                     |
|                                     |
|                                     |
|                                     |
|                                     |
|                                     |
|                                     |
|                                     |
|                                     |
|                                     |
|                                     |
|                                     |
|                                     |
|                                     |
|                                     |
|                                     |
| 27 1 btu/ef                         |
|                                     |

|                                                                                               | 0.004                                                         |                                                                      | HEAT                                                | GAIN/LOSS WOF                                                                  | RIKSHEET                                 |                                                                                                           |               |
|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------|
| ocation Lin<br>uliding Name Cir                                                               | / Of Unwood, NJ<br>Wood, NJ<br>/ Hall<br>nk Cuttila           |                                                                      |                                                     | Project No.: CHA's:<br>Site Elevation:<br>Date:                                | 22215<br>17 Feet<br>12/01/10             | Specific Volume                                                                                           | 14.00]CF/#    |
| illding/Facility Designat                                                                     | ion                                                           | City Hall                                                            |                                                     |                                                                                |                                          |                                                                                                           |               |
| DOLING HEAT GAIN<br>DLAR GAINS                                                                | IS TO THE ROC                                                 | M - SENS                                                             | IBLE                                                |                                                                                |                                          |                                                                                                           |               |
| NDOWS                                                                                         | AREA<br>(SF)                                                  |                                                                      | iHGF Shad                                           | Cooling<br>le Coef Load                                                        |                                          | Solar Heat Gain                                                                                           |               |
| orth Exposure<br>ist Exposure<br>with Exposure<br>est Exposure                                | 30<br>215<br>144<br>230                                       | 21<br>22                                                             | 8 btw/tvst 6 btw/tvst 5 btw/tvst 6 btw/tvst         | Factor  0.8 0.75 Glass 1  0.8 0.31 Glass 1  0.8 0.58 Glass 1  0.8 0.29 Glass 7 | Type C<br>Type C                         | 684 Btu/hr<br>11,517 Btu/hr<br>15,034 Btu/hr<br>11,526 Btu/hr                                             |               |
| INDUCTION                                                                                     |                                                               |                                                                      |                                                     |                                                                                |                                          |                                                                                                           | 38,760 Btu/h  |
|                                                                                               | NET<br>AREA                                                   | U-VALUE                                                              | Cooling<br>Load Temp.                               | Return Air Fac                                                                 | tor                                      | Room Heat Gain                                                                                            |               |
| orth Exposure set Exposure unth Exposure est Exposure ouf nestration oors iilling rittion oor | (SF) 690 1,785 894 1,660 13,285 619 87 13,285 0) 13,285       | 0.07<br>0.07<br>0.07<br>0.07<br>0.06<br>0.50<br>0.14<br>0.14<br>0.05 | DH.  20°F 39°F 27°F 22°F 73°F 22°F 73°F 0°F 0°F 0°F | 10<br>10<br>10<br>10<br>10<br>10                                               |                                          | 908 Btu/hr 4,527 Btu/hr 1,588 Btu/hr 2,402 Btu/hr 55,138 Btu/hr 6,047 Btu/hr 328 Btu/hr 0 Btu/hr 0 Btu/hr |               |
| ERNAL HEAT GAINS (a                                                                           | il loads below are                                            | based on O                                                           | ccupled Periods)                                    |                                                                                |                                          | Room Heat Gain                                                                                            | 72,938 Blu/h  |
| ghts  ig Load  ople  imputer Work Stations  uipment sc.                                       | 1.25 w/st x<br>0.25 w/st x<br>20 people x                     | 13,28<br>25                                                          | 5 Occ Area =<br>5 Occ Area =<br>5 btu/person x      | 16.6 kW x 3.4x<br>3.3 kW x 3.4x<br>100% time in space =<br>120 W/Unit x 3414 = | 1.0 FAF = 1.0 RAF =                      | 56,677 Blu/h<br>11,335 Blu/h<br>5,100 Blu/h<br>8,191 Blu/h<br>0 Blu/h                                     |               |
| NTILATION AND INFILT                                                                          | 1. 17. C. S. S. Carlotte & - 67 C. A. C. C. S. F. M. C. C. C. |                                                                      |                                                     |                                                                                |                                          |                                                                                                           | 81,304 Btu/h  |
| ls 5,009 SF<br>ors 87 SF<br>dows 619 SF<br>illation 2,000 cm                                  | 0.20                                                          | Factor<br>CFM/SF<br>CFM/LF<br>CFM/LF                                 | Perimeter Ratio  0.85 LF/SF  0.85 LF/SF             | Coef Temp. I<br>1.04<br>1.04<br>1.04<br>1.04                                   | Opt.<br>26 *F<br>26 *F<br>26 *F<br>26 *F | Room Heat Gain  22,022 Btu/h  434 Btu/h  3,072 Btu/h  58,620 Btu/h                                        |               |
| tration 871 cm                                                                                | 0.3                                                           | 4C/hr                                                                |                                                     |                                                                                |                                          |                                                                                                           | 84,148 Btu/h  |
| OLING HEAT GAINS                                                                              | S TO THE RAPI                                                 | LENUM - S                                                            | ENSIBLE                                             |                                                                                | 4,9                                      | 50                                                                                                        |               |
| NDUCTION                                                                                      | NET<br>AREA<br>(SF)                                           | U-VALUE                                                              | Cooling<br>Load Temp.<br>Dif.                       | Return Air Fact                                                                | OT                                       | Room Heat Gain                                                                                            |               |
| h Exposure<br>Exposure<br>th Exposure<br>t Exposure                                           | 1,640<br>1,840<br>1,920<br>1,600                              | 0.07<br>0.07<br>0.07<br>0.07                                         | 20 39 39 39 39 39 39 39 39 39 39 39 39 39           | 10<br>10<br>10<br>10                                                           |                                          | 2,157 Btu/hr<br>4,720 Btu/hr<br>3,410 Btu/hr<br>2,315 Btu/hr                                              |               |
| đ                                                                                             | 13,285                                                        | 0.06                                                                 | 79                                                  | 0.0                                                                            |                                          | O Btu/hr                                                                                                  | 12,602 Btu/h  |
| RNAL HEAT GAINS                                                                               |                                                               |                                                                      |                                                     | a mongress in the section of<br>On the following a section of the              |                                          |                                                                                                           | Suppose DIGIT |
| ts .                                                                                          | 1.25 w/sf x                                                   | 13,285                                                               | Occ Area ≃                                          | 16.6 kW x3413x                                                                 | 0.00 RAF =                               | O Btu/h                                                                                                   | 1             |
|                                                                                               | obsale a s                                                    |                                                                      |                                                     |                                                                                |                                          |                                                                                                           | 0 Btu/h       |

84,148 208,448 Sub Total

SENSIBLE HEAT GAINS - TEMP INDEPI Internal Gains to Room Internal Gains to Pienum

Sub Total

| NDENT  |
|--------|
| 81,304 |
| 0      |
|        |
|        |
| 81,304 |
|        |

|                                                           | HEAT GA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IIN/LOSS WORKSHEET                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project Name:<br>Location<br>Building Name<br>Engineer:   | City of Linwood, NJ<br>Linwood, NJ<br>City Halli<br>Frank Cuttria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Project No.: CHA #22215 Street Specific Page 12/01/10                                                                                                 | ffic Volume 14.00 CF/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Building/Facility De                                      | signation City Hall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                       | nder er en                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Outdoor Summer D                                          | sign DB Temperature 14 °F esign DB Temperature 91 °F esign WB Temperature 73 °F umidity Ratio 0.0121 #/#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Indoor Winter Design DB Temperature<br>Indoor Summer Design DB Temperature<br>Indoor Summer Design WB Temperature<br>Indoor Air (70°F) Humidity Ratio | 72 *F<br>65 *F<br>60 *F<br>0.0079 ###                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ENVELOPE DESCR                                            | IPTIONS (Descriptions are from Interior to Exterior)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Walls (Select One -                                       | Type X)  Steel Siding, 4* Insulation, Steel Siding Plaster or Gypsum, frame construction, 5* Insulation, 1* stucco 4* WH CMU, 1* Insulation, Frinshed Exteno Plaster or Gypsum, frame construction, 3* Insulation, 8* LW CMU 4* Face Brick, 2* Concrete, 1* Insulation, Exterior Finish 4* Face Brick, 4* Concrete, 1* Insulation, Exterior Finish Interior Finish, 2* Insulation, 8* CMU, 4* Face Brick Finished Suiface, 8* LW CMU (filled), Air Space, 4* Face Brick Stucco or Gypsum, 2:5* Insul, Face Brick OTHER U value calculator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | R Value Wall Type  15.2 1  18.2 1  18.2 1  5.2 2  J 7.8 5  5.1 12  4.0 11  10.9 16  11.11 16  14.3 10  15.0 16                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Roofs (Select One)                                        | OTHER Steel Deck, 5" Insul., BU Roof Attic Roof with 6" Insul. 4":HW Concrete Deck, BU Roof Ceiling, 3" Insulation, 4" Concrete Deck, BU Roof Ceiling, 4" Concrete Deck, 5" Insulation, BU Roof Ceiling, 4" Concrete Deck, 6" Insulation, BU Roof Ceiling, Wood Deck, 6" Insulation, Felt & Membrane Wood Deck, 6" Insulation, Felt & Membrane Uvatue balculator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R Value Roof Type  25.0 1  18.2 1  25.0 4  2.7 2  14.9 4  18.5 13  21.7 14  22.7 10  18.0                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Windows (Select On                                        | e) Aluminum Frame: 1/8° SP Glazing Aluminum Frame: 1/4° DP Glazing Aluminum Frame: 3/16° DP Glazing Aluminum Frame: 1/2° DP Glazing Skylights Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | U.Value<br>1:05<br>0:60<br>0:62<br>0:50<br>0:90                                                                                                       | No Storm   Flat Glass   1.05   1.05   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00 |
| BUILDING CHARAC<br>Roof Area<br>Occupied Area             | TERISTICS  13,285 SF 13,285 SF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Return Plenum?                                                                                                                                        | Double Glaze (e=0.4)   0.42     Double Glaze (e=0.2)   0.35     Triple Glaze (1/4 m air)   0.42     Triple Glaze (1/2 m air)   0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                           | Gross Average Wall<br>Wall Average Wall<br>Length Height                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ceiling Window<br>Helghi Area                                                                                                                         | Door<br>Area Net Wall Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| North Exposure East Exposure South Exposure West Exposure | 80 Pt 29.5 Pt 17.2 Pt 225 Pt 2 | 9.0 Ft 30 SF<br>9.0 Ft 215 SF<br>9.0 Ft 444 SF                                                                                                        | 0 SF 2,330 SF<br>45 SF 3,605 SF<br>3,605 SF<br>2,814 SF<br>2,814 SF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

2,000 cfm 600 cfm

Occupied Forced Ventilation
Unoccupied Forced Ventilation

0.8 AC/hr 0.2 AC/hr

## APPENDIX L

**Block Load Models** 

| Description            | ΩTY | Manufacturer<br>Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Model No.         | Serial No.     | Equipment Type /<br>Utility | Capacity/Size    | Location               | Areas Served                             | Date installed Useful Life | Remaining<br>Useful Life | 4)-1, 1-4, 1-4       |
|------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------|-----------------------------|------------------|------------------------|------------------------------------------|----------------------------|--------------------------|----------------------|
|                        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                |                             |                  |                        |                                          |                            | (Carres)                 | 2014                 |
| HW Boiler              | 7   | Burnham                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 808 B-W 1         | 16001706       |                             | 462MBH/369.6 MBH | Boiler Room            | Municipal                                |                            | c                        |                      |
| HW Pump - 1            | -   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                |                             | dH.c.            | Boiler Dm              | Municipal                                |                            | , ,                      |                      |
| HW Pump - 2            | -   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                |                             | en e             | 10000                  | Muli licipal                             |                            | 2                        |                      |
| HW Boiler              | -   | Weil McLain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GU-6 Series 4     |                |                             | 1100             | COUNTRIES OF THE       | Municipal                                |                            | 20                       |                      |
| Air Handling Unit - 1  | -   | Carrier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 40RM-024-B511YC   | 22003F33794    |                             | HGWI C/:         | MEH                    | Police Wing                              |                            | 0 +                      |                      |
| Air Handling Linit - 2 | -   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                |                             |                  |                        | Billas indiminas                         |                            | 2                        |                      |
| Air Handling I mit - 3 | -   | Trans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   | , 5000         |                             |                  |                        | Court Room                               |                            | 15                       |                      |
| Air Handling Unit . 4  | -   | 21.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Chilliane Changer | NSUM3/381      |                             |                  |                        | Police Department                        |                            | 0                        |                      |
| Air Handling Unit - 5  | -   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                |                             |                  |                        |                                          |                            |                          |                      |
| Condensing Unit - 1    | -   | Rudd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RAWI -240CA7      | 7031E93100 000 |                             |                  |                        |                                          |                            |                          |                      |
| Catalogue I late       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | 1301120100 003 |                             |                  |                        | Municipal Wing                           | New                        | ଛ                        | 3 fans @ 1/3HP *     |
| Corrogensing Unit + Z  | -   | Carner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 38AHZ008-501      | 604050046      |                             |                  |                        | Court Room                               |                            |                          | 1 comp Zfans         |
| Condensing Unit - 3    | -   | Trane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TTA1508300EA      | 3335TEKAD      |                             |                  |                        |                                          |                            | 15                       | Police Denadment     |
| Condensing Unit - 4    | -   | Sano CW2432                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                |                             |                  |                        |                                          |                            | 2 2                      | Color Capatilla      |
| Condensing Unit - 5    | -   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                |                             |                  |                        | ***************************************  |                            | 2                        | roice cispaich       |
| Exhaust Fan - 1        | 2   | Greenheck                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CSP-226           |                |                             | MDC 210          | 401 (2) 14 15 15 15 15 | 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1- |                            |                          |                      |
| Exhaust Fan - 2        | ~   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CSP-224           |                |                             | 979 CEM          | Ond Elv Municipal      | MIGNY I OTHER                            |                            |                          |                      |
| Exhaust Fan - 3        | -   | Tamarack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |                |                             | 115 CEM          | 2rd Elr Minologia      | US & NIGHBH                              |                            |                          |                      |
| Generator              | -   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                | Fust Oil                    | 120 KW           | Basement               | Basement                                 |                            |                          | Comp. 6.8 amps @115V |
| Dehumiditer            | 83  | Santa Fe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |                | Electric                    | Fan 250 CFM      |                        |                                          | ,                          | 4                        |                      |
| Domestic HW Heater     | -   | AO Smith                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |                | Electric                    | 1.5 KW           |                        | Police                                   |                            |                          | 30 Gallon            |
| Domestic HW Heater     | *** | Rheem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   | 0295GG03782    | Natural Gas                 | 75 MBH           |                        | Municipal Wino                           |                            |                          | 75 Gallon            |
| T                      |     | The second secon |                   | _              |                             |                  |                        | D                                        | _                          |                          |                      |

New Jersey BPU Energy Audit Program CHA #22215 City of Linwood - Municipal Bullding

## APPENDIX K

## **Equipment Inventory**

Portfolio Manager - Edit Building Space

Page + @ Tools +

(T) ACCOUNT (M) CONTACT (A) TREQUESTIVE (M) CONTACT (T) HELP (X) LOSCUE

PORTFOLIO MANAGER

STORM > Liv Fortiolio > Caty Hall > Edit Office Space

Edit Office Space: Main Offices

To edit a space attribute, please select the "Edit" link at the far right of each row

\*Space Name: :Main Offices

| Current Space Attribute Values Whatistia?                                     |                                                                                                                    |     |        |                                                                                   |                                        |
|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----|--------|-----------------------------------------------------------------------------------|----------------------------------------|
| Cost Automa                                                                   | Space Anthrose Value (Temporary sphies should only be used) (Lan Activity salue is not currently known) (Wasta See |     | Units  | Effective Date (when this Abribute Value was first title) was to ex- (WMITE/TYTY) | Entre I printed                        |
| Gross Floor Area<br>(required for benchmarking)                               | 13285                                                                                                              | N/A | Sq. Fl | 01/01/2009                                                                        | 12/23/2010 by Lit (WOOD550 Edit        |
| Weekly operating hours<br>frequired for benchmarking)                         | <b>50</b>                                                                                                          |     | Hours  | 01/01/2009                                                                        | 12/23/2010 by LEE/NOOD550 Esit         |
| Workers on Main Shift<br>(required for benchmarking)                          | 20                                                                                                                 |     |        | 01/01/2009                                                                        | 12/23/2010 by LINWOOD550 <u>Edit</u>   |
| Number of PCs<br>(required for benchmarking)                                  | 20                                                                                                                 |     |        | 01/01/2009                                                                        | 12/23/2010 by LINWOOD550 <u>Edit</u>   |
| What percent of this space is air-conditioned?<br>(required for benchmarking) | 50% or mare                                                                                                        |     |        | 01/01/2009                                                                        | 12'23/2010 by LINVYOOD550 Edit         |
| What percent of this space is heated? (required for benchmarking)             | 50% or more                                                                                                        |     |        | 01/01/2009                                                                        | 12/23/2010 by LINI//OOD350 <u>Edit</u> |

| Space Revision History                       |                                            |
|----------------------------------------------|--------------------------------------------|
|                                              | Effective (lare.                           |
| Space Attributo Value doe Debugh Value Units | With the Altribute Value   Heaven   Heaven |
|                                              | (BIRDENSYY)                                |
| No Revision History                          |                                            |

## APPENDIX J

EPA Portfolio Manager



# Wind Resource of New Jersey Mean Annual Wind Speed at 30 Meters

|      |                    | Generalized Transmis | ssion Line    |                  |           |             |           |
|------|--------------------|----------------------|---------------|------------------|-----------|-------------|-----------|
| eatu | res                | Category             | .∕-√-` 500 kV | Mean Speed at 30 | m         | 13.4 - 14.5 | 6.0 - 6.5 |
| 0    | City               | / ~ ' Under 100 kV   |               | mph              | m/s       | 14.5 - 15.7 | 6.5 - 7.0 |
| ~/   | Interstate Highway |                      | ∕*√* 735 kV + | < 10.1           | < 4.5     | 15.7 - 16.8 | 7,0 - 7,  |
| -2.7 | C                  | / 100 kV-161 kV      | Step-Up       | 10.1 - 11.2      | 4.5 - 5.0 |             | 7.5 - 8.0 |
| n. F | County Boundary    | ∕√ 230 kV-287 kV     |               | 11.2 - 12.3      | 5.0 - 5.5 |             | 8.0 - 8.5 |
|      | Water Body         | .∕-√-* 345 kV        | ✓ ✓ DC Line   | 12.3 - 13.4      | 5.5 ~ 6.0 | > 19.0      | > 8.5     |



Projection: Tranverse Mercator,
UTM Zone 17 WGSB4
Spatial Resolution of Wind Resource Data; 200m
This map was created by AWS Truewind using
the MesoMap system and historical weather data.
Although it is believed to represent an accurate
overall picture of the wind energy resource,
estimates at any location should be confirmed by
measurement.

The transmission line information was obtained by AWS Truewind from the Global Energy Decisions Velocity Suite. AWS does not warrant the accuracy of the transmission line information.

### APPENDIX I Wind

exas State Energy Conservation Office

Home

What Can I Do?

Electric Choice

.. \_

Home Energy

FAOs

LEARN Fact Sheets Lesson Plans

PLAY Calculators

NETWORK Organizations Businesses Events Calendar

**BROWSE** 

Resources
Solar
Wind
Biomass
Geothermal
Water

Projects

TX Energy : Past and Present

Financial Help

About Us

About SECO

RARE

#### Interactive Energy Calculators

RENEWABLE ENERGY THE INFINITE POWER OF TEXAS

Our calculators help you understand energy production and consumption in a whole new way. Use them to develop a personal profile of your own energy use.

Carbon Pollution Calculator Electric Power Pollution Calculator PV System Economics Solar Water Heating What's a Watt?

#### Solar Water Heating Calculator

Water heating is a major energy consumer. Although the energy consumed daily is often less than for air conditioning or heating, it is required year round, making it a good application of solar energy. Use this calculator to explore the energy usage of your water heater, and to estimate whether a solar water heater could save you money.

| Wa                                | ter Heate | er Characteristics                    |       |
|-----------------------------------|-----------|---------------------------------------|-------|
| Physical                          |           | Thermal                               |       |
| ? Diameter (feet)                 | 1.5       | ? Water Inlet Temperature (Degrees F) | 58    |
| ? Capacity (gallons)              | 50        | Ambient Temperature (Degrees F)       | 70    |
| Surface Area (calculated - sq ft) | 21.36     | Hot Water Temperature (Degrees F)     | 135   |
| ? Effective R-value               | NaN       | Hot Water Usage (Gallons per Day)     | 64.3  |
|                                   | Ene       | rgy Use                               |       |
| 1694                              |           | Pheat Delivered in Hot Water (BT      | J/hr) |
| 0                                 |           | Pleat loss through insulation (BTI    | J/hr) |

|                         | Gas vs. Electric Water Heating |                            |  |  |  |  |  |  |
|-------------------------|--------------------------------|----------------------------|--|--|--|--|--|--|
| Gas                     |                                | Electric                   |  |  |  |  |  |  |
| 0.8                     | ? Overall Efficiency           | 0.98                       |  |  |  |  |  |  |
| 0.8                     | ? Conversion Efficiency        | 0.98                       |  |  |  |  |  |  |
| 2118 BTU/hr             | Power Into Water Heater        | 1729 BTU/hr                |  |  |  |  |  |  |
|                         | Cost                           |                            |  |  |  |  |  |  |
| \$.98 /Therm            | 7 Utility Rates                | \$.15 /kWh                 |  |  |  |  |  |  |
| \$ 181.826i             | ? Yearly Water Heating Cost    | \$ 665.384 <sub>4</sub>    |  |  |  |  |  |  |
| How Does Solar Compare? |                                |                            |  |  |  |  |  |  |
| ? sol                   | Percentage Solar:<br>70        |                            |  |  |  |  |  |  |
| 170.492( years for gas  | Payback Time for Solar System  | 46.5896tyears for electric |  |  |  |  |  |  |

NJBPU Energy Audits CHA #22215 City of Linwood- City Hall

| Multipliers |
|-------------|
|-------------|

| Description                  | >LC         | INIT     |             | UNIT COSTS | S        | S      | UBTOTAL CC    | STS                | TOTAL       |         |
|------------------------------|-------------|----------|-------------|------------|----------|--------|---------------|--------------------|-------------|---------|
|                              | 3           | ō        | MAT.        | LABOR      | EQUIP.   | MAT.   | LABOR   EQUIP | FOUIP              | TSCS        | REMARKS |
| Synergy Solar Thermal System | 2           | еа       |             |            | \$ 3.600 |        | 64            | 2 7 848 \$ 7 848   | 1           |         |
| Piping modifications         | <b>,-</b> - | <u>s</u> | \$ 2.000 \$ | \$ 3.500   | +        | 1 960  | A 225         |                    | A 40 A      |         |
| Electrical modifications     | -           | <u>s</u> | \$ 1000     |            |          | OBO #  |               | )<br>•             | 9 6         |         |
|                              |             |          | ,           |            |          | 300    | <b>3</b>      | 9                  | 08,130<br>0 |         |
| 65 GallonStorage Tanks       | 2           | ea       | \$ 200      | \$ 250     | 0        | \$ 400 | 200           | €9                 | 006<br>\$   |         |
| 10 Gallon Drip Tank          | 23          | <b>в</b> | \$ 100 \$   | \$ 78      | 8        | \$ 200 | \$ 156        | 1<br><del>69</del> | \$ 356      |         |
|                              |             |          |             |            |          | €3     | es.           | 69                 | ·<br>\$     |         |

| \$17,489 Subtotal | Subtotal                               |
|-------------------|----------------------------------------|
| \$ 2,623          | 15% Cantingency                        |
| \$ 2,623          | 15% Contractor O&P                     |
| \$ 4,372          | 25% Engineering                        |
| \$27,108          | Totaí                                  |
|                   | ************************************** |

#### APPENDIX H

**Solar Thermal Domestic Hot Water Plant** 



#### **Cautions for Interpreting the Results**

The monthly and yearly energy production are modeled using the PV system parameters you selected and weather data that are typical or representative of long-term averages. For reference, or comparison with local information, the solar radiation values modeled for the PV array are included in the performance results.

Because weather patterns vary from year-to-year, the values in the tables are better indicators of long-term performance than performance for a particular month or year. PV performance is largely proportional to the amount of solar radiation received, which may vary from the long-term average by  $\pm$  30% for monthly values and  $\pm$  10% for yearly values. How the solar radiation might vary for your location may be evaluated by examining the tables in the *Solar Radiation Data Manual for Flat-Plate and Concentrating Collectors* (http://rredc.nrel.gov/solar/old\_data/nsrdb/redbook/).

For these variations and the uncertainties associated with the weather data and the model used to model the PV performance, future months and years may be encountered where the actual PV performance is less than or greater than the values shown in the table. The variations may be as much as 40% for individual months and up to 20% for individual years. Compared to long-term performance over many years, the values in the table are accurate to within 10% to 12%.

If the default overall DC to AC derate factor is used, the energy values in the table will overestimate the actual energy production if nearby buildings, objects, or other PV modules and array structure shade the PV modules; if tracking mechanisms for one- and two-axis tracking systems do not keep the PV arrays at the optimum orientation with respect to the sun's position; if soiling or snow cover related losses exceed 5%; or if the system performance has degraded from new. (PV performance typically degrades 1% per year.) If any of these situations exist, an overall DC to AC derate factor should be used with PVWATTS that was calculated using system specific component derate factors for *shading*, *sun-tracking*, *soiling*, and *age*.

The PV system size is the nameplate DC power rating. The energy production values in the table are valid only for crystalline silicon PV systems.

The cost savings are determined as the product of the number of kilowatt hours (kWh) and the cost of electricity per kWh. These cost savings occur if the owner uses all the electricity produced by the PV system, or if the owner has a net-metering agreement with the utility. With net-metering, the utility bills the owner for the net electricity consumed. When electricity flows from the utility to the owner, the meter spins forward. When electricity flows from the PV system to the utility, the meter spins backwards.

If net-metering isn't available and the PV system sends surplus electricity to the utility grid, the utility generally buys the electricity from the owner at a lower price than the owner pays the utility for electricity. In this case, the cost savings shown in the table should be reduced.

Besides the cost savings shown in the table, other benefits of PV systems include greater energy independence and a reduction in fossil fuel usage and air pollution. For commercial customers, additional cost savings may come from reducing demand charges. Homeowners can often include the cost of the PV system in their home mortgage as a way of accommodating the PV system's initial cost.

To accelerate the use of PV systems, many state and local governments offer financial incentives and programs. Go to http://www.nrel.gov/stateandlocal for more information.

| Please send questions and comments to Webmaster | Disclaimer and copyright notice. |
|-------------------------------------------------|----------------------------------|



Return to RREDC Home Page, https://redesirelgos/



## AC Energy & Cost Savings



Municipal Building, Linwood, NJ

| Station Identification   |               |  |  |  |  |  |  |  |
|--------------------------|---------------|--|--|--|--|--|--|--|
| Station Identific        | ation         |  |  |  |  |  |  |  |
| City:                    | Atlantic_City |  |  |  |  |  |  |  |
| State:                   | New_Jersey    |  |  |  |  |  |  |  |
| Latitude:                | 39.45° N      |  |  |  |  |  |  |  |
| Longitude:               | 74.57° W      |  |  |  |  |  |  |  |
| Elevation:               | 20 m          |  |  |  |  |  |  |  |
| PV System Specifications |               |  |  |  |  |  |  |  |
| DC Rating:               | 10.0 kW       |  |  |  |  |  |  |  |
| DC to AC Derate Factor:  | 0.770         |  |  |  |  |  |  |  |
| AC Rating:               | 7.7 kW        |  |  |  |  |  |  |  |
| Array Type:              | Fixed Tilt    |  |  |  |  |  |  |  |
| Array Tilt:              | 39.5°         |  |  |  |  |  |  |  |
| Array Azimuth:           | 180.0°        |  |  |  |  |  |  |  |
| Energy Specifications    |               |  |  |  |  |  |  |  |
| Cost of Electricity:     | 14.6 ¢/kWh    |  |  |  |  |  |  |  |

|       | Re                                 | sults                 |                         |
|-------|------------------------------------|-----------------------|-------------------------|
| Month | Solar<br>Radiation<br>(kWh/m²/day) | AC<br>Energy<br>(kWh) | Energy<br>Value<br>(\$) |
| 1     | 3.61                               | 895                   | 130.58                  |
| 2     | 4.20                               | 932                   | 135.98                  |
| 3     | 4.78                               | 1124                  | 163.99                  |
| 4     | 5.23                               | 1155                  | 168.51                  |
| 5     | 5.44                               | 1211                  | 176.68                  |
| 6     | 5.48                               | 1133                  | 165.30                  |
| 7     | 5.55                               | 1171                  | 170.85                  |
| - 8   | 5.41                               | 1155                  | 168.51                  |
| 9     | 5.23                               | 1106                  | 161.37                  |
| 10    | 4.60                               | 1034                  | 150.86                  |
| 11    | 3.59                               | 821                   | 119.78                  |
| 12    | 3.17                               | 766                   | 111.76                  |
| Year  | 4.69                               | 12503                 | 1824.19                 |

Output Hourly Performance Data

\*

Output Results as Text

About the Hourly Performance Data

Saving Text from a Browser

Run PVWATTS v.! for another US location or an International location Run PVWATTS v.2 (US only)

Please send questions and comments regarding PVWATTS to Webmaster  $\,$ 

Disclaimer and copyright notice



Return to RReDC home page (http://rredc.nrel.gov)

# City of Linwood City Hall

Cost of Electricity

\$0.146 \$/kWh

Photovoltaic (PV) Rooftop Solar Power Generation-10kW System

| Budgetary |     | Annual Uti | Utility Savings |               | Estimated   | Total   | New Jersey<br>Renewable | New Jersey New Jersey<br>Renewable Renewable | Payback     | Payback |
|-----------|-----|------------|-----------------|---------------|-------------|---------|-------------------------|----------------------------------------------|-------------|---------|
| Cost      |     |            |                 |               | Maintenance | Savings | * Energy                | * SBEC                                       | (without    | (with   |
|           |     |            |                 |               | Savings     | 3       |                         | 5                                            | micelinave) | modumo) |
| €9        | κW  | kWh        | therms          | <del>U.</del> | 4           | ¥       | ¥                       | 6                                            | 7,55%       |         |
| 000 000   | <   | 001        |                 |               |             | •       | ١                       | 9                                            | Legis       | rears   |
| 970,000   | 0.0 | 12,503     | 0               | \$1,800       | •           | \$1,800 | \$10,000                | \$6.100                                      | 38.9        | 7.6     |
|           |     |            |                 |               |             |         |                         |                                              |             | 2       |

\*Incentive based on New Jersey renewable energy program for non-residential applications(PV)= \$0.75/W of installed PV system
\*\* Estimated Solar Renewable Energy Certificate Program (SREC) SREC for 15 Years= \$487/1000kwh

Estimated Solar Renewable Energy Certificate Program (SREC) payments for 15 Years from RR Renewable Energy Consultants

|      |     |     | ····· |     | ,   | ·   | r   | г   |     |     | <del>,</del> | ,   | <del>,</del> | ····· |     |     |
|------|-----|-----|-------|-----|-----|-----|-----|-----|-----|-----|--------------|-----|--------------|-------|-----|-----|
| SHEC | 009 | 009 | 909   | 200 | 200 | 200 | 200 | 500 | 200 | 200 | 400          | 400 | 400          | 400   | 400 | 487 |
| Year | 1   | 2   | 3     | 4   | 5   | 9   | 7   | 8   | 6   | 10  | 1            | 12  | 13           | 14    | 15  | AVG |

#### APPENDIX G

Photovoltaic (PV) Rooftop Solar Power Generation

#### City of Linwood,NJ CHA #22215 City Hall

#### New Jersey Pay For Performance Incentive Program

**Note:** The following calculation is based on the New Jersey Pay For Performance Incentive Program per April, 2010. Building must have a minimum average electric demand of 200 kW. This minimum is waived for buildings owned by local governments or non-profit organizations.

The incentive values represented below are applicable through December 31, 2010.

| Total Building Area (Square Feet)        | 13,000 |
|------------------------------------------|--------|
| Is this audit funded by the NJ BPU (Y/N) | Yes    |

| Incentive                  | ÷ #1   |         |
|----------------------------|--------|---------|
| Audit not funded by NJ BPU | \$0.10 | \$/saft |
| Audit is funded by NJ BPU  | \$0.05 | \$/sqft |

Bureau of Public Utilites (BPU)

|                               | Annual   | Utilities |
|-------------------------------|----------|-----------|
|                               | kWh      | Therms    |
| Existing Cost (from utility)  | \$46,136 | \$16,815  |
| Existing Usage (from utility) | 294,280  | 14,022    |
| Proposed Savings              | 2,187    | 5,813     |
| Existing Total MMBtus         | 2,4      | 07        |
| Proposed Savings MMBtus       | 5        | 89        |
| % Energy Reduction            | 24.      | 5%        |
| Proposed Annual Savings       | \$8,     | 455       |

|              | Min (Savin | igs = 15%) | Increase (Sa | vings > 15%) | Max Inc | entive   | Achieved | Incentive |
|--------------|------------|------------|--------------|--------------|---------|----------|----------|-----------|
|              | \$/kWh     | \$/therm   | \$/kWh       | \$/therm     | \$/kWh  | \$/therm | \$/kWh   | \$/therm  |
| Incentive #2 | \$0.11     | \$1.10     | \$0.005      | \$0.05       | \$0.13  | \$1.45   | \$0.13   | \$1.45    |
| Incentive #3 | \$0.07     | \$0.70     | \$0.005      | \$0.05       | \$0.09  | \$1.05   | \$0.09   | \$1.05    |

|                      |       | Incentives : | \$       |
|----------------------|-------|--------------|----------|
|                      | Elec  | Gas          | Total    |
| Incentive #1         | \$0   | \$0          | \$650    |
| Incentive #2         | \$284 | \$8,429      | \$8,713  |
| Incentive #3         | \$197 | \$6,104      | \$6,300  |
| Total Alf Incentives | \$481 | \$14,532     | \$15,663 |

| Total Project Cost | \$190.123 |
|--------------------|-----------|
|                    |           |
|                    |           |
|                    |           |
|                    |           |
|                    |           |

|                                   |      | Allowable<br>Incentive |
|-----------------------------------|------|------------------------|
| % Incentives #1 of Utility Cost*  | 1.0% | \$650                  |
| % Incentives #2 of Project Cost** | 4.6% | \$8,713                |
| % Incentives #3 of Project Cost** | 3.3% | \$6,300                |
| Total Eligible Incentives***      | \$1  | 5,663                  |
| Project Cost w/ Incentives        | \$17 | 4,459                  |

| Project Payb   | ack (years)   |
|----------------|---------------|
| w/o Incentives | w/ Incentives |
| 22.5           | 20.6          |

<sup>\*</sup> Maximum allowable incentive is 50% of annual utility cost if not funded by NJ BPU, and %25 if it is.

Maximum allowable amount of Incentive #3 is 20% of total project cost.

Maximum allowable amount of Incentive #2 & #3 is \$1 million per gas account and \$1 million per electric account

<sup>\*\*</sup> Maximum allowable amount of incentive #2 is 30% of total project cost.

 $<sup>^{***}</sup>$  Maximum allowable amount of incentive #1 is \$50,000 if not funded by NJ BPU, and \$25,000 if it is.

#### APPENDIX F

New Jersey Pay For Performance Incentive Program

ECM-4 Lighting Replacement

Electric Rate Demand Rate

ST O HT AWN

Simple Payback 174.7E98625 69.90794502 69.90794502 3.4952972 200 3.4953972 300 Retroffe Cost 920 8 200 800 700 800 COST ANALYSIS Annual S Saved 11.44 2.86 57.22 92.63 Annual kWh Saved 405.6 8.112 81.12 20.28 656 008 7909 405.6 kW Saved 0.741 374.4 Annual 807.392 7.488 374.4 Annual Hours 3 8 8 8 8 Dally Heurs 92 8 Retrafit Control SWICH RETROFIT CONDITIONS switch swich swich swich kW/Space 0.684 D.144 LED PAR 38 Spot LED PAR 38 Spot LED PAR 38 Spot LED PAR 38 Spor LED PAR 38 Spot LED PAR 38 Spor New Lamp Туре Watts per Fixture Number of Fixtures Annual KWh Annual Hours Daily Hours Exist Control **EXISTING CONDITIONS** Watts per Non-Operational Fixtures Number of Non- V Operational Fixtures Watts per Flxture **Се**тр Туре 2 x 2 2 x 4 Wat Scorce Fixture Type Number of Fixtures Monost Olice,
March Clock
That Assessed
Estat Recorn
Selected
Sele Area Description

2860 9.23712326

2,187 \$ 309

2

-7

19,852

#### APPENDIX E

ECM-4 Lighting Replacement

ECM-3 Night Setback

| Multipliers |      |
|-------------|------|
| Material:   | 0.98 |
| Labor:      | 1.21 |
| Equipment:  | 1.09 |

|                      |     |       |      |                | į      |                   |                |        |             |         |
|----------------------|-----|-------|------|----------------|--------|-------------------|----------------|--------|-------------|---------|
| Description          | ΛΙΟ | TINIT | )    | INIT COST      | 0      | Ins               | SUBTOTAL COSTS | OSTS   | TOTAL       |         |
|                      | 5   |       | MAT. | LABOR   EQUIP. | EQUIP. | MAT.              | LABOR          | EOUIP  | COST        | REMARKS |
|                      |     |       |      |                |        | S                 | ક્ક            | g:     | 4           |         |
|                      |     |       |      |                |        | es.               | မာ             | · 69   | + 65        |         |
| Reprogram UUC system | 8   | hrs   | - \$ | \$ 80          | €9     | €5                | \$ 774         | 49     | \$ 774      |         |
|                      |     |       |      |                |        | \$                | €>             | €9     | 63          |         |
|                      |     |       |      |                |        | €9                | \$             | ±5     | \$          |         |
|                      |     |       |      |                |        | \$                | ક્ક            | \$     | ·<br>\$     |         |
|                      |     |       |      |                |        | \$                | \$             | ٠<br>ج | ક્ક         |         |
|                      |     |       |      |                |        | 8                 | s              | €9     | မာ          |         |
|                      |     |       |      |                |        | ٠                 | s              | €\$    | ₩           |         |
|                      |     |       |      |                |        | ۱<br><del>د</del> | s              | €\$    | 49          |         |
|                      |     |       |      |                |        | • <del>\$</del>   | €9             | ·<br>· | <i>\$</i> : |         |

| \$ 77.44 10% Contingency Contractor \$ 85.18 10% O&P \$ - 0% Engineering \$ 937 Total | <br>ø  | 774   | 774  Subtotal   |
|---------------------------------------------------------------------------------------|--------|-------|-----------------|
| 85.18 1<br>-<br>937 Total                                                             | <br>63 | 77.44 | 10% Contingency |
| 85.18 1                                                                               |        |       | Contractor      |
| Total                                                                                 | ↔      | 85.18 | 10% O&P         |
|                                                                                       | <br>↔  | ٠     | 0% Engineering  |
|                                                                                       | <br>S  |       | Total           |

Municipal Section Building Footprint Healing Elliciorcy Cooling Efficiency Building Balance Tomp. fritomal Gaila Unioo Intomal Gaila factor Avo Occ Intornet Gaila Fac ECM-3 Night Setback

9,064, SF 58% 1,2 kW/on 50 °F

72 ÷

Heating Energy Savings Cooling Energy Savings

2.566 therms 6.968 kWh

| 72 F Cool<br>72 F Cool<br>80 F F F F F F F F F F F F F F F F F F F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| np. 772 FF 72 FF 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Ex Cocupied Hig Tomp.  Ex Unocupied Hig Tomp.  Prep Cocupied Hig Tomp.  Prop Unocupied Hig Tomp.  Occupied Hig Tomp.  Occupied Healing UA  Unoccupied Healing UA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Ex Occupied Cing Temp.  Ex Unoscupied Cing Temp.  Prop Creatived Cing Temp.  Occupied Confin Comp.  Occupied Confin U.A  Unoscupied Confing U.A  Unoscupied Confing U.A  Unoscupied Confing U.A  Confin Conf. Enthalpy Salpoint  Confin Conf. Conf. Confin Con                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 9.00 SF<br>1.00 SF<br>1.0 |
| uilding Footprint Aning Elicitory poling Elicitory uilding Bahare Tomp. tomal Gains noe intornal Gain factor ro Coc Internat Gain Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

|               |                |                    | ì.                   | Cooling Unace Enthalpy Selpoint                                                                                         | Interpretation | 26.75 8WIb               | Stuffs<br>Stuffs      |                                             |            |                       |          |              |               |            |                |               |         |                                        |           |          |
|---------------|----------------|--------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------|-----------------------|---------------------------------------------|------------|-----------------------|----------|--------------|---------------|------------|----------------|---------------|---------|----------------------------------------|-----------|----------|
| Heating and t | cooling anaigy | r are unrelated it | n this model. If the | Heating and cooling anargy are unrelated in this model. If the building baing analyzed is not cooled, disregard cooling | antiyzod is no | 1 coolad, diaregu        | ard cooling enti      | energy calculations                         |            | ٠                     |          |              |               |            |                |               |         |                                        |           |          |
|               |                |                    |                      |                                                                                                                         |                |                          | EXISTIN               | STING LOADS                                 |            |                       |          |              | PRODUCEDIO    | 31 0,600   |                |               |         |                                        |           |          |
|               |                | -                  | -                    |                                                                                                                         |                | pejdnoog                 |                       |                                             | Unoccupied |                       |          | Occupied     |               | 2000       | Unoccupied     | T             |         |                                        |           |          |
| Avg Outdoor   |                | Existing           | Occupied             |                                                                                                                         | Епуеюре        |                          |                       | Unoccupled                                  |            |                       | Envelope |              |               | Unoccupine |                |               | Confing | Proposed                               | Extering  | Proposed |
| Blos 'F       | ******         | M<br>M<br>M<br>M   | 포વાશ<br>મ            | Equipment Bin<br>Hours                                                                                                  | Load           | Ventilation<br>Load BTUH | Internal Galo<br>BTUH | Envelope Ventilation<br>Load BTUH Load BTUH |            | Internal Gain<br>RTDH |          | Ventilistion | Internal Galn |            | Ventilation In | Informal Gain |         | Energy                                 |           | Energy   |
| ⋖             |                | ω                  | O                    | ۵                                                                                                                       | យ              | ı                        | 5                     | Ξ                                           | -          | 7                     |          |              | 2             |            | 0              | 50            | ×       | ************************************** | M         | SE ×     |
| 102.5         | 49.1           | 0                  | 0                    | 0                                                                                                                       | 124 450        | 030 F00                  | 26 507                | 100 00                                      | 47.4       |                       |          |              |               |            |                |               |         |                                        |           |          |
| 97.5          | 42.5           | o:                 | . (*)                |                                                                                                                         | 166.53         |                          | 100,007               | 196,56                                      | 250,040    | 629                   | -134,455 | 394,350      | -36,587       | -60,453    | -253,545       | 1,829         | 0       | 0                                      | 0         | ō        |
| 92.5          | 100            | . 2                | , <del>K</del>       |                                                                                                                         | 200            |                          | 70,00                 | 90,190                                      | 1/8/9/     | 628':                 | .116,531 | -277, 897    | -36,587       | -48,116    | -178,672       | 1,829         | 588     | 27.1                                   | 0         | 5        |
| 87.5          | 9 8            | 3 5                | 3 0                  | 2 1                                                                                                                     | 2000           |                          | 28,28                 | -67,855                                     | 144,640    | 628,                  | -38,503  | -224,965     | 785,385       | -35,779    | -144,640       | -1,829        | 3,836   | 1,696                                  | 0         | -        |
| 5             | 2              | 3 3                | 7                    | 3 8                                                                                                                     | 9/9'08-        |                          | -36,587               | -55,539                                     | -111,741   | - 829                 | -80,576  | -173,796     | 58,587        | -23,441    | -111,741       | -1.829        | 2.807   | 2.535                                  |           | -        |
| 1             | 3 5            | 5 8                | 3 5                  | 2 6                                                                                                                     | -62,748        |                          | 36,587                | -43,181                                     | -62,246    | -1,829                | -62,748  | -127,521     | -36,587       | -11, 104   | -82,246        | -1,829        | 3,606   | 4.897                                  | 0         | C        |
| 2             | 200            | 200                | 3 6                  | 5 5                                                                                                                     | -44,820        |                          | 36.587                | 30,844                                      | 55,020     | -1.829                | -44,820  | -45,575      | -36,587       | 0          | 0              | 1,829         | 6,566   | 3.442                                  | C         | 6        |
| 2 6           | 2 6            | 2 5                | 2,2                  | 3                                                                                                                       | 26,832         |                          | -36,587               | 18,506                                      | -27,793    | -1,829                | -26,892  | -43,228      | -36,587       | 0          | 0              | 929           | 5.213   | 996                                    |           | ć        |
| 3 6           | 2.5            | 200                | 9 6                  | S i                                                                                                                     | 200            |                          | -38,587               | -6,169                                      | -2,836     | -1,829                | -8,964   | -4,411       | -36,587       | 0          | D              | . 829         | 1.935   | 1.484                                  | 0         | - 6      |
| 3 0           |                | 80.0               | 200                  | 2/2                                                                                                                     | 13,954         |                          | -36,587               | 10,465                                      | 25,885     | 628'-                 | 13,954   | 40,229       | 36,587        | 0          | •              | E24           | 4       |                                        | 625       | 63       |
| 5 5           | 2.5            | 747                | 20.0                 | 477                                                                                                                     | 21,298         |                          | 36,567                | 15,974                                      | 39,478     | -1,829                | 21,298   | 61.402       | 35,587        | 2,754      | 6.807          | 1 829         |         | 0                                      | 1 11      | 234      |
| 2.5           |                | 202                | 577                  | g (                                                                                                                     | 28,642         |                          | -36,587               | 21,482                                      | 53,091     | -1,829                | 28,642   | 82,575       | 36,587        | 8,262      | 20,420         | 1,829         | ٥       | 6                                      | 229       | 405      |
| 2 2           | <u> </u>       | 3 5                | ŝ                    | 426                                                                                                                     | 35,985         |                          | -36,587               | 26,990                                      | 66.704     | -1,829                | 35,986   | 103,748      | -36,587       | 13,770     | 34,033         | -1.829        | 0       | o                                      | 1.022     | 708      |
| 37.5          | <u> </u>       | 7.00               | 484                  | 100                                                                                                                     | 43,331         |                          | -36,587               | 32,438                                      | 10,317     | -1,829                | 43,33    | 124,92       | -38,587       | 19,278     | 47,646         | -1,829        | ٥       | ó                                      | 1,384     | 680      |
| 32.5          | 2.5            | 5                  | 8 8                  | , e                                                                                                                     | 9,000          |                          | 38,587                | 38,006                                      | 53,931     | 628                   | 50,675   | 146,095      | -38,587       | 24,787     | 61,259         | 1,829         | ٥       | 0                                      | 1,624     | 1,284    |
| 27.5          | 2              | 348                | ž <u>č</u>           | 25                                                                                                                      | 200            |                          | 780'08'               | 43,514                                      | 107,544    | -1,829                | 58,019   | 167,268      | -36,587       | 30,295     | 74,872         | -1,829        | a       | o                                      | 1,638     | 1,342    |
| 22.5          | 89             | 250                | 3 2                  | 242                                                                                                                     | 505,00         |                          | 780 987               | 49,022                                      | 121,157    | 628                   | 85,363   | 188,441      | -36,587       | 35,803     | 88,485         | -1,829        | 0       | 0                                      | 943       | 783      |
| 17.5          | 10             | 184                | : 2                  | įį                                                                                                                      | 20,00          |                          | 2000                  | 056,930                                     | 134 770    | 628                   | 72,707   | 209,614      | -36,587       | 4.<br>1.   | 102,098        | 628           | 0       | c                                      | Ę         | 905      |
| 12.5          | 7              | 2                  | 3 2                  | ž ž                                                                                                                     | 100,00         |                          | 200                   | 850,038                                     | 48,383     | -1,829                | 80,051   | 230,787      | -36,587       | 48,819     | 115,712        | -1,829        | 0       | Ö                                      | 845       | 559      |
| 7.5           |                | 2 8                | 3 1-                 | 7 :                                                                                                                     | 285,19         |                          | /80'90                | 55,547                                      | 161,896    | -1,829                | 87,395   | 251,980      | -36,587       | 52,327     | 129,325        | -1,829        | o       | 5                                      | <u>26</u> | 230      |
| 2             | -              | } a                |                      | 2 .                                                                                                                     | Object.        |                          | /R'95                 | 77,055                                      | 175,609    | -1,628                | 94,740   | 273,133      | -36,567       | 57,835     | 142,938        | -1,829        | 0       | 8                                      | 150       | 72       |
| ç             |                |                    | 9 <                  |                                                                                                                         | 102,084        | _                        | 36,587                | 76,553                                      | 189,223    | 1,629                 | 102,084  | 294,307      | -36,587       | 63,343     | 156,551        | -1,629        | 0       | 6                                      | 8         | 8        |
| 2.5           | · -:           |                    | > <                  | <b>.</b>                                                                                                                | 109,428        |                          | 36,587                | 62,071                                      | 202,836    | -1,829                | 109,428  | 315,480      | -36,587       | 68,851     | 170,164        | -1,829        | 0       | 6                                      | 0         | 0        |
| TOTALS        |                | 8 760              | 3 130                | E 694                                                                                                                   | 116,772        | 336,553                  | -36,587               | 87,579                                      | 216,449    | -1,829                | 116,772  | 336,653      | -36.587       | 74,380     | 183,777        | -1.829        | 0       | 0                                      | ٥         | 0        |
|               |                | 20142              | 2,163                | 3,042 €                                                                                                                 |                | 1000                     |                       |                                             |            |                       |          |              |               |            |                |               | 24,255  | 17,290                                 | 9,935     | 7,357    |
|               |                |                    |                      |                                                                                                                         |                |                          |                       |                                             |            |                       |          |              |               |            |                |               |         |                                        |           |          |

Existing Building Ventitation & Inflitration (occ)
Overheat Ventifation Rector
Auditional Ventifation to offset overheat
Existing Building Ventifation & Inflitration (unocc)

3,921 cfm 1.06 0 ofm 2,521 cfm

#### APPENDIX D

ECM-3 Night Setback

ECM-2 Replace Boilers

| Multipliers |      |
|-------------|------|
| Material:   | 0.98 |
| Labor       | 1.21 |
| Equipment:  | 1.09 |

| Description                               | VTO | TIMI | n                     | UNIT COSTS     | (0     | E SI              | SUBTOTAL COSTS         | STS     | TOOC               |                                |
|-------------------------------------------|-----|------|-----------------------|----------------|--------|-------------------|------------------------|---------|--------------------|--------------------------------|
|                                           | ,   |      | MAT.                  | LABOR          | EQUIP. | MAT.              | LABOR                  | EQUIP.  | IOIAL COST REMARKS | HEMAKKS                        |
| Weil McClain for Municipal(350 MBTU each) | 2   | еа   | \$ 20,000   \$ 15,000 | \$ 15,000      |        | \$ 39,200         | \$ 39,200 \$ 36,300 \$ | 49      | \$ 75,500          | 75.500 Includes removal of old |
| Weil McClain for Police(175MBTU)          | -   | ва   | \$ 10,000 \$ 10,000   | \$ 10,000      |        | \$ 9,800          | 9,800 \$ 12,100 \$     | 8       | -                  | 21,900 boilers and startup     |
|                                           |     |      |                       |                |        | ι<br><del>ω</del> | €5                     | 69      | · *                |                                |
| Piping                                    | -   |      | \$ 3,000 \$ 3,000     | \$ 3,000       |        | \$ 2,940          | 2,940 \$ 3.630         | 8       | \$ 6.570           |                                |
| Electrical                                | 1   |      | \$ 1,000              | 000'1 \$ 000'1 |        | 086               | 980 \$ 1,210 \$        | 69      | \$ 2.190           |                                |
|                                           |     |      |                       |                |        | 8                 | es<br>es               | 69      | 6                  |                                |
| FILE                                      | 3   |      | \$ 1,250 \$ 1,250     | \$ 1,250       |        | \$ 3,675          | 3,675 \$ 4,538         | \$      | \$ 8,213           |                                |
|                                           |     |      |                       |                |        | ,<br>⇔            | 1<br>69                | ،<br>جه | 69                 |                                |
|                                           |     |      |                       |                |        | 9                 | <b>↔</b>               | \$      | \$                 |                                |
|                                           |     |      |                       |                |        | 8                 | \$                     | €       | €9                 |                                |
|                                           |     |      |                       |                |        | •                 | *                      | 69      | ,<br>49            |                                |

| Total           | 180,852      | 49            |
|-----------------|--------------|---------------|
| 25% Engineering | 36,170       | ₩             |
| 10% O&P         | \$ 13,152.84 | G             |
| Contractor      |              |               |
| 15% Contingency | 17,155.88    | <del>()</del> |
| Subtotal        | 114,373      | <del>()</del> |

ECM-2 Replace Boilers replace boilers in Municipal Section and Police Section

Nat.Gas Nat.Gas **Proposed Fuel Existing Fuel** 

| <u>Item</u>                      | Value        | Units   | Formula/Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------------------|--------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Baseline Fuel Cost               | \$ 1.20      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Proposed Fuel Cost               | \$ 1.20      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                  |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Baseline Fuel Use                | 11,316       | Therms  | Based on historical utility data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Existing Boiler Plant Efficiency | 989          |         | Estimated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Baseline Boiler Load             | 769,488      | Mbtu/yr | Baseline Fuel Use x Existing Efficiency x 100 Mbtu/Therms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Baseline Fuel Cost               | \$ 13,570    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                  |              |         | THE PROPERTY OF THE PROPERTY O |
| Proposed Boller Plant Efficiency | 65%          |         | New Boller Efficiency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Proposed Fuel Use                | 8,364        | Therms  | Baseline Boiler Load / Proposed Efficiency / 100 Mbtu/Therms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Proposed Fuel Cost               | \$ 10\030    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                  |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Annual Savings                   | 2,952        | Therms  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                  |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Annual Savings                   | \$ 3,540 lyn | /yr     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                  |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

\*Note to engineer: Link savings back to summary sheet in appropriate column.

#### APPENDIX C

ECM-2 Replace Boilers

ECM-1 Increase Ceiling Insulation

| Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \_YE | THAIL |                 | INIT COSTS            | m      | SUE           | STOTAL CO        | STS          | TOTAL              |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|-----------------|-----------------------|--------|---------------|------------------|--------------|--------------------|-----------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7    | ONE   | MAT.            | MAT.   LABOR   EQUIP. | EQUIP. | MAT.          | MAT. LABOR   EQ  | EQUIP.       | COST               | HEMAHKS   |
| Install 6" batt insulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4180 | sqft  | \$ 0.48 \$ 0.55 | \$ 0.55               |        | \$ 1,966      | ,966 \$ 2,782 \$ | မာ           | \$ 4,748           |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |                 |                       |        | <del>69</del> | €                | \$           | \$                 |           |
| The state of the s |      |       |                 |                       |        | €9            | ;<br>⊌9          | s            | 69                 |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |                 |                       |        | ₩             | ,<br>\$          |              | -<br>\$            |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |                 |                       |        | <del>.</del>  | \$               | -<br>\$      | ,<br>↔             |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |                 |                       |        | ₩             | -                | <del>-</del> | ,<br><del>69</del> |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |                 |                       |        | <del>•</del>  | ₩                | -<br>\$      | • <del>9</del>     |           |
| TO THE PARTY OF TH |      |       |                 |                       |        | ;<br>\$       | \$               | -<br>\$      | ,<br>#             |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |                 |                       |        | \$            | \$               | ,<br>\$      | - \$               |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |                 |                       |        | *             | \$               | -            | \$                 | 177747777 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |                 |                       |        | €5            | 6/3              | ·            | ¥.                 |           |

| \$ 4,748  | Subtotal       |
|-----------|----------------|
| \$ 237.40 | 5% Contingency |
|           | Contractor     |
| \$ 498.55 | 10% O&P        |
| - \$      | Engineering    |
| \$ 5,484  | Total          |

# ECM-1: Increase Ceiling Insulation add insulation above ceiling in Police Wing only

Existing Area (4,38) si
Existing U-value (1,05 Buthinf(si\*F)
Existing R-value (1,735
Proposed L-value (1,735
Proposed L-value (1,735
Proposed L-value (1,735
Cooling System Efficiency (1,24)
Heating Yon' Temp (60 F

Existing Heating Load Temp Diff.

Existing Max. Roof Heating Load

Proposed Heating Load

Proposed Heating Load

Occupied Heating Setpoint

Occupied Heating Setpoint

72 F

73 F 18.541 Bhuhr

Existing Cooling Existing Cooling Load Temp Diff. Existing Max. Roof Cooling Load 7,949 Bluhr (E) F 65 F

Proposed Cooling Proposed Cooling Load Occupied Cooling Setpoint Unoccupied Cooling Setpoint

Existing Heating Total 18.000 (18.000)
Proposed Heating Total 18.000 (18.000)
Savings 18.000 (18.000)
Input 2000 (18.000)
Existing Cooling Total 2000 (18.000)
Savings 2000 (18.000)

|            |            |                 |                 | ~         |               |       | _     |       |       |       |       |      |      |           |           |           |           |           | _         |           |           |           |         |         |            |        | ,      | _          |
|------------|------------|-----------------|-----------------|-----------|---------------|-------|-------|-------|-------|-------|-------|------|------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|---------|---------|------------|--------|--------|------------|
|            |            | Proposed        | negring road    | (Dittay)  | •             | •     | •     | •     | •     | •     | •     | •    | •    | 1,228,760 | 1,396,360 | 2,028,613 | 2,678,455 | 3,089,089 | 3,076,640 | 1,753,373 | 1 294,501 | 1,176,396 | 475,675 | 147,328 | 63,499     | •      | •      | 18 408 780 |
|            |            | Proposed        | COOHING LOSIC   | (NALIGY)  | ,             | 77    | 83    | 34    | 69    | 99    | 65    | 22   | +    | ı         | 1         | 1         | ,         | ŧ         | t         | ,         | 4         |           |         | ,       | •          | •      | ,      | 305        |
|            |            | ating           | LORG/           | (como)    | ,             |       | •     | •     | ,     | •     | •     |      | •    | 2,556,909 | 2,905,665 | 4,221,312 | 5,573,558 | 6,428,039 | 6,402,135 | 3,648,568 | 2,693,916 | 2,447,945 | 989,825 | 306,572 | 132,135    | •      | •      | 18 205 581 |
|            | Existing   | (T)             | LOBO (CANIDARY  | (WANDAL)  |               | _     | 45    | 7     | 143   | 168   | 135   | 46   | •    | ,         |           | ,         | •         | ,         | •         | •         |           | •         | •       | •       |            | ,      | ,      | r1r        |
|            |            | Proposed        | Heat Loss       | (Lame)    | 1             | •     | •     |       | •     | ,     | ,     | ,    | ,    | 1,656     | 2,227     | 2,798     | 3,369     | 3,940     | 4,511     | 5,082     | 5,653     | 6,224     | 6,795   | 7,366   | 7,937      | 8,508  | 9,080  |            |
| Unoccupied |            | Existing        | near Loss       | COLUMBIA  | •             | •     | ٠     |       | •     |       | •     |      | •    | 3,446     | 4,634     | 5,822     | 7,011     | 8,199     | 9,387     | 10,576    | 11,764    | 12,952    | 14,140  | 15,329  | 16,517     | 17,705 | 18,893 |            |
| Unoc       |            | Proposed        | meat Gain       | 11/110    | 50%,          | 3,715 | 3,141 | 2,570 | 1,999 | 1,428 | 857   | 286  | ,    | •         | •         | ,         |           |           |           | •         | •         |           | •       | •       | •          | *      | •      |            |
|            |            | Existing        | Hear Gain       | (illumo)  | 2 6 1         | 1,724 | 6,535 | 5,347 | 4,159 | 2,971 | 1,782 | 594  |      | ,         | •         |           |           |           |           | •         | ,         |           | •       | •       | •          | •      | ٠      |            |
|            |            | Proposed        | Hear Loss       | (Dimin)   |               |       | ,     | •     |       | •     | •     | •    | •    | 1,656     | 2,227     | 2,798     | 3,369     | 3,940     | 4,511     | 5,082     | 5,653     | 6,224     | 6,795   | 7,386   | 7,937      | 8,508  | 9,080  |            |
| pa         |            | Existing Heat   | LOSS            | Dimili    |               | •     | ,     |       | •     | •     | •     | •    | •    | 3,446     | 4,634     | 5,822     | 7,011     | 8,199     | 9,387     | 10,576    | 11,764    | 12,952    | 14,140  | 15,329  | 16,517     | 17,705 | 18,893 |            |
| Occupied   |            | Proposed Heat   | Calin<br>Calina | limic     | 582,4         | 3,712 | 3,141 | 2,570 | 1,999 | 1,428 | 857   | 286  | ,    | •         |           | ٠         | *         |           |           | •         | •         | •         | ,       | •       |            | 1      | ,      |            |
|            |            | Heat            | Gain            | (Ditable) | 218'8         | 1,724 | 6,535 | 5,347 | 4,159 | 2,971 | 1,782 | 594  | ,    | ,         | •         | •         | •         |           |           |           | •         | •         |         |         | ,          |        | •      |            |
|            | Unoccupied | Equipment Bin   | Hours           | ľ         |               |       | 0     | 0     | ¢     | 6     | 0     | 0    | 0    | •         | c         |           | 0         | 0         | 0         | 0         | ó         | 0         | 0       | 0       | 0          | 0      | 0      | -          |
|            | Occupied   |                 | Bin Hours       |           | <b>5</b> (    | ch    | 69    | 132   | 344   | 266   | 755   | 780  | 889  | 742       | 627       | 725       | 795       | 784       | 682       | 345       | 553       | 189       | 2       | 8       | œ          | 0      | ٥      | R 760      |
|            | Existing   | Equipment       | Bin Hours       |           | <b>&gt;</b> ( | on.   | 69    | 132   | 344   | 566   | 755   | 780  | 889  | 742       | 627       | 725       | 795       | 784       | 682       | 345       | 229       | 189       | 0,2     | 50      | <b>6</b> 0 | 0      | 0      | 9.760      |
|            |            | Avg Outdoor Air | lemb, Bins T    | 2 447     | 10k.5         | 37.5  | 92,5  | 87.5  | 82,5  | 77.5  | 72.5  | 67.5 | 62.5 | 57.5      | 52.5      | 47.5      | 42.5      | 37.5      | 32.5      | 27.5      | 22.5      | 17.5      | 12.5    | 7.5     | 2.5        | -2,5   | -7.5   | TOTALS     |

#### APPENDIX B

ECM-1 Increase Ceiling Insulation

#### GAS MARKETERS LIST

The following is a listing of marketers/suppliers/brokers that have been licensed by the NJ Board of Public Utilities to sell natural gas to residential, small commercial and industrial customers served by the Public Service Electric and Gas Company distribution system. This listing is provided for informational purposes only and PSE&G makes no representations or warranties as to the competencies of the entities listed herein or to the completeness of this listing.

Gateway Energy Services
44 Whispering Pines Lane
Lakewood, NJ 08701
(800) 805-8586
www.gesc.com

Metro Energy Group, LLC 14 Washington Place Hackensack, NJ 07601 www.metroenergy.com

RPL Holdings, Inc 601 Carlson Pkwy Minnetonka, MN 55305

Great Eastern Energy 3044 Coney Island Ave. PH Brooklyn, NY 11235 888-651-4121 www.greateasterngas.com Metromedia Energy, Inc. 6 Industrial Way Eatontown, NJ 07724 (800) 828-9427 www.metromediaenergy.com South Jersey Energy Company One South Jersey Plaza, Rte 54 Folsom, NJ 08037 (800) 756-3749 www.sjindustries.com/sje.htm

Hess Corporation 1 Hess Plaza Woodbridge, NJ 07095 (800) 437-7872 www.hess.com Mitchell- Supreme Fuel (NATGASCO) 532 Freeman Street Orange, NJ 07050 (800) 840-4GAS www.mitchellsupreme.com

Sprague Energy Corp.
Two International Drive, Ste 200
Portsmouth, NH 03801
800-225-1560
www.spragueenergy.com

Hudson Energy Services, LLC 545 Route 17 South Ridgewood, NJ 07450 (201) 251-2400 www.hudsonenergyservices.com

MxEnergy Inc.
P.O. Box 177
Annapolis Junction, MD 20701
800-375-1277
www.mxenergy.com

Stuyvesant Energy LLC 642 Southern Boulevard Bronx, NY 10455 (718) 665-5700 www.stuyfuel.com

Intelligent Energy 7001 SW 24<sup>th</sup> Avenue Gainesville, FL 32607 Sales: I 877 I've Got Gas (1 877 483-4684) Customer Service: 1 800 927-9794 www.intelligentenergy.org Pepco Energy Services, Inc.
23 S Kinderkamack Rd, Suite D
Montvale, NJ 07645
(800) 363-7499
www.pepco-services.com

Tiger Natural Gas, Inc. 1422 E. 71st Street, Suite J. Tulsa, OK 74136 1-888-875-6122 www.tigernaturalgas.com

Systrum Energy 877-SYSTRUM (877-797-8786) www.systrumenergy.com Plymouth Rock Energy, LLC 165 Remsen Street Brooklyn, NJ 11201 866-539-6450 www.plymouthrockenergy.com

UGI Energy Services, Inc. d/b/a GASMARK 704 E. Main Street, Suite I Moorestown, NJ 08057 856-273-9995 www.ugienergyservices.com

Macquarie Cook Energy, LLC 10100 Santa Monica Blvd, 18<sup>th</sup> Fl Los Angeles, CA 90067

PPL EnergyPlus, LLC
Energy Marketing Center
Two North Ninth Street
Allentown, PA 18101
1-866-505-8825
www.pplenergyplus.com/natural+gas/

Woodruff Energy
73 Water Street
P.O. Box 777
Bridgeton, NJ 08302
(856) 455-1111
www.woodruffenergy.com

#### **ELECTRIC MARKETERS LIST**

The following is a listing of marketers/suppliers/brokers that have been licensed by the NJ Board of Public Utilities to sell electricity to residential, small commercial and industrial customers served by the Public Service Electric and Gas Company distribution system. This listing is provided for informational purposes only and PSE&G makes no representations or warranties as to the competencies of the entities listed herein or to the completeness of this listing.

American Powernet Management 867 Berkshire Blvd, Suite 101 Wyomissing, PA 19610 www.americanpowernet.com Gerdau Ameristeel Energy Co. North Crossman Road Sayreville, NJ 08872

PPL EnergyPlus, LLC Energy Marketing Center Two North Ninth Street Allentown, PA 18101 1-866-505-8825 http://www.pplenergyplus.com/

BOC Energy Services 575 Mountain Avenue Murray Hill, NJ 07974 www.boc-gases.com

Gexa Energy LLC New Jersey 20 Greenway Plaza, Suite 600 Houston, TX 77046 (866) 304-GEXA Beth.miller@gexaenergy.com

Sempra Energy Solutions The Mac-Cali Building 581 Main Street, 8<sup>th</sup> Floor Woodbridge, NJ 07095 (877) 273-6772 www.SempraSolutions.com

Commerce Energy Inc. 535 Route 38, Suite 138 Cherry Hill, NJ 08002 (888) 817-8572 or (858) 910-8099 www.commerceenergy.com

Glacial Energy of New Jersey 2602 McKinney Avenue, Suite 220 Dallas, TX 75204 www.glacialenergy.com

South Jersey Energy Company 1 South Jersey Plaza, Route 54 Folsom, NJ 08037 (800) 756-3749 www.sjindustries.com

ConEdison Solutions
701 Westchester Avenue
Suite 201 West
White Plains, NY 10604
(800) 316-8011
www.ConEdSolutions.com

Hess Corporation 1 Hess Plaza Woodbridge, NJ 07095 www.hess.com

Strategic Energy, LLC 6 East Main Street, Suite 6E Ramsey, NJ 07446 (888) 925-9115 www.sel.com

Constellation NewEnergy, Inc. 1199 Route 22 East Mountainside, NJ 07092 908 228-5100 www.newenergy.com Integrys Energy Services, Inc 99 Wood Avenue, Suite 802 Iselin, NJ 08830 www.integrysenergy.com

Suez Energy Resources NA 333 Thornall Street FL6 Edison, NJ 08818 866.999.8374(toll free) www.suezenergyresources.com

Credit Suisse (USA), Inc. 700 College Road East Princeton, NJ 08450 www.creditsuisse.com

Liberty Power Delaware, LLC 1901 W Cypress Road, Suite 600 Fort Lauderdale, FL 33309 (866) Power-99 (866) 769-3799 www.libertypowercorp.com

UGI Energy Services, Inc. d/b/a POWERMARK 1 Meridian Blvd. Suite 2C01 Wyomissing, PA 19610 (800) 427-8545 www.ugienergyservices.com

Direct Energy Services, LLC One Gateway Center, Suite 2600 Newark, NJ 07102 (973) 799-8568 www.directenergy.com Liberty Power Holdings, LLC 1901 W Cypress Creek Road, Suite 600 Fort Lauderdale, FL 33309 (866) Power-99 (866) 769-3799 www.libertypowercorp.com

FirstEnergy Solutions 395 Ghent Road Suite 407 Akron, OH 44333 (800) 977-0500 www.fcs.com Pepco Energy Services, Inc. d/b/a Power Choice 23 S. Kinderkamack Rd Ste D Montvale, NJ 07645 (800) 363-7499 www.pepco-services.com



Natural Gas Usage - City Hall

City of Linwood CHA Project Number: 22215 City Hall 400 Poplar Ave Account Number: 116 37 0042 0 8

Meter Number: 0232070

| weed Mailton.  | 0,402620 |           |               |                 |              |      |
|----------------|----------|-----------|---------------|-----------------|--------------|------|
| Month          | Therms   | Tot       | Total Charges |                 | (\$/therm)   | Γ    |
| June-09        |          | ₩         | 641.16        | S               |              | 09.1 |
| July-09        |          | 236 \$    | 384.35        | G               |              | 63   |
| August-09      |          | 203 \$    | 332.23        | <del>∨</del>    | •            | 97   |
| September-09   |          | 500 \$    | 550.00        | €)              | <b>***</b>   | 10   |
| October-09     |          | \$ 208    | 1,083.29      | · <del>(y</del> | <b>T</b>     | 34   |
| November-09    |          | 1102 \$   | 1,472.67      | ↔               | 4            | 1.34 |
| December-09    |          | 2414 \$   | 2,545.87      | ↔               | 4            | .05  |
| January-10     |          | 2348 \$   | 3,009.97      | ₩               | <b>T</b>     | .28  |
| February-10    |          | 2713 \$   | 3,224.50      | ↔               | •            | 139  |
| March-10       |          | 1555 \$   | 1,758.56      | ↔               | <del></del>  | .13  |
| April-10       |          | 8 9 2 8   | 987.93        | ↔               | <del>-</del> | 1.01 |
| May-10         |          | \$ 892    | 824.03        | ↔               | -            | 1.07 |
| June-10        |          | 344 \$    | 364.06        | <del>s</del>    | 4            | 90.  |
| July-10        |          | 273 \$    | 300.30        | <del>69</del>   | •            | 1.10 |
| August-10      |          | 349 \$    | 383.90        | <del>()</del>   |              | 1.10 |
| September-10   |          | 500 \$    | 550.00        | \$              | -            | .10  |
|                |          |           |               |                 |              |      |
| Most Recent Yr |          | 14,022 \$ | 16,815        | ઝ               | ,            | .20  |
|                |          |           |               |                 |              |      |



## Reconcile Thermal Model

Building Footprint
Heating Efficiency
Cooling Efficiency
Internal Gain actor
Ave Oce Internal Gain Factor
Economizer available (Y/N)

ş

Ex Occupied Cing Temp.
Ex Unoccupied Cing Temp.
Occupied Choding UA
Unoccupied Cooling UA
Cooling Occ Enthalpy Setpoint
Cooling Unocc Enthalpy Setpoint

Ex Occupied Htg Temp.
Ex Unoccupied Htg Temp.
Occupied Healing UA
Unoccupied Healing UA 65 +F 65 +F (4,781) blu/hr/\*F (3,290) blu/hr/\*F 26,75 Blu/h 26,75 Blu/h

72 °F 72 °F 1,938 blu/hr/°F 1,958 blu/hr/°F

Heating and cooling energy are unrelated in this model. If the building being analyzed is not cooled, disregard cooling energy calculations

|                |           |                                         | -                          |               |         |         |         |          |          |          |          |         |         |         |         |         |               |         |         |         |         |         |         |         |         |         |          |         |         |        |
|----------------|-----------|-----------------------------------------|----------------------------|---------------|---------|---------|---------|----------|----------|----------|----------|---------|---------|---------|---------|---------|---------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|---------|---------|--------|
|                |           |                                         | Existing<br>Heating Energy | therms        | Z       |         | 0       | 0        | 0        | 0        | c        | , c     | · c     | , <     | Ş       | 0.4     | 2 2           |         | 202     | 250     | 278     | 280     | 908     | 238     | 3 8     | 8       | 3 5      | ? <     |         | 11.320 |
|                |           |                                         | Cooling                    | Energy kWh    | W       |         | 0       | 352      | 2.052    | 3.153    | 6.345    | 7.511   | 6.113   | 2 402   |         |         | · c           | , ,     | · ·     |         | · ·     | · c     | · c     | ) C     |         | , c     |          | · c     |         | 27,988 |
|                |           |                                         | Capling Energy             | KWh           | 7       |         | 0       | 325      | 2,052    | 3,153    | 6.345    | 7.511   | 5.113   | 2 492   | c       |         |               |         | · c     |         |         | . c     |         |         |         |         | · c      |         |         | 27,988 |
|                |           | 1000                                    | Economizer                 | Ε             | ¥       |         | 0       | 0        | 0        | 0        | 0        | 0       | - 63    | c       |         |         | , ¢           |         | · c     |         |         |         | 0       |         |         |         |          |         | . 0     |        |
|                |           |                                         | Internal Gain              | втин          | 'n      | 3       | -2,439  | -2,439   | -2,439   | -2,439   | -2,439   | 2.439   | 2,439   | -2.439  | 2 430   | 5,439   | 2.439         | 2.430   | -2.439  | -2.439  | -2.439  | 2.439   | 2.439   | -2.439  | -2.439  | -2.439  | 2,439    | -2.439  | -2,439  |        |
| -              | linocomia | 200000000000000000000000000000000000000 | Ventilation                | Load BTUH     | <b></b> | 20.00   | 253,545 | -178,672 | -144,640 | -111,741 | -82,246  | -55,020 | -27,793 | -2.B36  | 25,865  | 39.478  | 53,091        | 68,704  | 80,317  | 93,931  | 107,544 | 121,157 | 134,770 | 148,383 | 161,996 | 175,609 | 189,223  | 202.836 | 216,449 |        |
| 0000           | 2000      | Impropried                              | Envelope                   | Load BTUH L   | r       | 120 007 | 4/5,574 | -106,925 | -90,475  | -74,025  | -57,575  | -41,125 | -24,675 | -8,225  | 18,605  | 28,397  | 38,190        | 47,982  | 57.774  | 67,386  | 77,358  | 87,151  | 96,943  | 106,735 | 116,527 | 126,319 | 136,112  | 145,904 | 155,696 |        |
| EXISTING LOADS |           |                                         | Internal Gain              | BTUH          | ø.      | 40 700  | 40,702  | 48,782   | -48,782  | -48,782  | -48,782  | -48,782 | -48,782 | -48,782 | -48,782 | -48.782 | -48,782       | -48,782 | -48,782 | -48,782 | -48,782 | -48,782 | -48,782 | -48,782 | -48,782 | -48,782 | -48,782  | -48,782 | -48.782 |        |
|                | Occupied  |                                         | Ű                          | Load BTUH     | u       | CHE YOU | 000,450 | /RR'//Z- | -224,965 | -173,796 | -127,921 | -85,575 | -43,228 | -4,411  | 40,229  | 61,402  | 82,575        | 103,748 | 124,921 | 146,095 | 167,268 | 188,441 | 209,614 | 230,787 | 251,960 | 273,133 | 294,307  | 315,480 | 336,653 |        |
|                |           |                                         | peo                        | Ξ.            | ш       | 170 970 | 040 444 | 0/2/001- | 1/4/161- | -107,567 | -83,664  | -59,760 | -35,856 | -11,952 | 18,605  | 28,397  | 38,190        | 47,982  | 57,774  | 67,566  | 77,358  | 87,151  | 96,943  | 106,735 | 116,527 | 126,319 | 136,112  | 145,904 | 155,896 |        |
|                | -         | Unoccupied                              | Equipment Bin              | Hours         | <b></b> | 0       |         | > ;      | <b>.</b> | 2 3      | 2        | 88      | 482     | 201     | 572     | 477     | <del>2</del>  | 486     | 511     | 204     | 438     | 252     | 147     | 122     | 5       | 55      | ın       | 0       | 0       | 5,631  |
|                |           | Occupied                                | Equipment Bin              | nours         | s       | 0       | · cr    | , #      | 3 1      | ÷ 5      | 9 ;      | 202     | 270     | 273     | 318     | 265     | 224           | 259     | 284     | 280     | 244     | 123     | 85      | 89      | SS      | 7       | ო        | 0       | 0       | 3,129  |
|                |           |                                         | Total Bin                  | Since         | 0       | 0       | a       | . 8      | 3 5      | 244      | 1 8      | 200     | 755     | 8       | 883     | 742     | 627           | 725     | 795     | 784     | 289     | 345     | 229     | 66<br>1 | 2       | ଷ       | <b>©</b> | 0 (     |         | 8,760  |
|                |           |                                         | Avg Outdoor                | Cil Cilcilary |         | 49.1    | 42.5    | 30.5     | 3 4      | 200      | 3 6      | 5 6     | 22.00   | 2.0     | 24.5    | 21.4    | 18.7          | 16.2    | 14.4    | 12.6    | 10.7    | 900     | 80.1    | c.c.    | 7.      | 2.6     | 1.0      | 00.     | 21.3    | -      |
|                |           | Avg Outdoor                             | Air Temp.                  |               | ¢       | 102.5   | 97.5    | 6        | 87.8     | 3 68     | 3 5      | 5 6     | 0 7 0   | 9 6     | 0.20    | 57.5    | ξ, ί,<br>ζ, ι | ر<br>رن | 62.5    | 3/.5    | 32.5    | 27.5    | , KK.3  | ς, / .  | 12.5    | 0,7     | 2,5      | , ','   | TOTALE  | 200    |

Existing Building Ventitation & Infiltration (occ)
Overheat Ventitation Factor
Additional ventitation to offset overheat
Existing Building Ventitation & Infiltration (unocc)
Economizer Ventitation (from AHU's)

3,921 cfm 1.00 0 cfm 2,521 cfm cfm

Energy Use Indices (calculated)

| Base Case | 11,320  | 11,316    | 100,0% |
|-----------|---------|-----------|--------|
|           | Healing | Target -> |        |

| Base Case | 27,986  | 27,933    | 100.2% |
|-----------|---------|-----------|--------|
|           | Cooling | Target -> |        |

